Sains Malaysiana 52(2)(2023): 625-639

http://doi.org/10.17576/jsm-2023-5202-23

 

First Principles Study of Toxic Gas Molecules Adsorption on Group IVA (C, Si, Ge) 2-Dimensional Materials

(Kajian Prinsip Pertama Penjerapan Molekul Gas Toksik pada Kumpulan IVA (C, Si, Ge) Bahan 2 Dimensi)

 

MOHD AZIZUL ZAINAL1,2, CHAN KAR TIM1,2,*, HISHAMUDDIN ZAINUDDIN 1,2, NURISYA MOHD SHAH1,2 & RAYMOND OOI CHONG HENG3

 

1Institute for Mathematical Research (INSPEM), Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia

2Department of Physics, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia

3Department of Physics, University of Malaya, 50603 Kuala Lumpur, Federal Territory, Malaysia

 

Received: 3 June 2022/Accepted: 11 November 2022

 

Abstract

Two-dimensional materials from group IVA namely graphene, silicene, and germanene have gained research interest in various fields of applications recently due to their extraordinary properties. These substrates have been successfully synthesized and are found to have interesting gas sensing capabilities. In this work, first-principles study using density functional theory is carried out to investigate the adsorption of toxic gases such as CO, Cl2, NO2, and COCl2 on these monolayers. We analyze the best adsorption site and orientation for these molecules on the monolayers by calculating the adsorption energy. Charge transfer, the density of state (DOS) and band diagram calculations are performed to explore the changes in their electronic and structural properties due to the adsorbed gas molecules. As for the sensing performance, crude estimations of the sensitivity and recovery time are performed. The results show that silicene and germanene monolayers are better at detecting CO and NO2 as compared to graphene. They have a short recovery time for CO but a long recovery time for NO2 implying that they are better for scavenging NO2. Besides, silicene is also a better gas sensor for chlorine gas with a 44 min recovery time. As for graphene, it is the best gas sensor for phosgene among the substrates. This study gives a clear prediction of substrates for the detection of these toxic gases.

 

Keywords: Density functional theory; germanene; graphene; silicene; toxic gases

 

Abstrak

Bahan dua dimensi daripada kumpulan IVA iaitu grafin, silisen dan germanen telah menarik minat penyelidikan dalam pelbagai bidang aplikasi baru-baru ini kerana sifatnya yang luar biasa. Substrat ini telah berjaya disintesis dan didapati mempunyai keupayaan penderiaan gas yang menarik. Dalam penyelidikan ini, kajian prinsip pertama menggunakan teori fungsi ketumpatan digunakan untuk mengkaji penjerapan gas toksik seperti CO, Cl2, NO2 dan COCl2 pada ekalapis ini. Kami menganalisis tapak penjerapan dan orientasi terbaik untuk molekul ini pada ekalapis dengan menghitung tenaga penjerapan. Pemindahan caj, ketumpatan keadaan (DOS) dan pengiraan rajah jalur dilakukan untuk meneroka perubahan dalam sifat elektronik dan struktur disebabkan oleh molekul gas terjerap. Bagi prestasi penderiaan, anggaran kasar sensitiviti dan masa pemulihan digunakan. Keputusan menunjukkan bahawa ekalapis silisen dan germanen lebih baik dalam mengesan CO dan NO2 berbanding grafin. Mereka mempunyai masa pemulihan yang singkat untuk CO tetapi masa pemulihan yang panjang untuk NO2 mengimplikasikan bahawa mereka lebih sesuai untuk menggarut NO2. Selain itu, silisen juga merupakan sensor gas yang lebih sesuai untuk gas klorin dengan masa pemulihan 44 minit. Bagi grafin, ia adalah penderia gas terbaik untuk fosgen. Kajian ini memberi ramalan yang jelas tentang substrat untuk pengesanan gas toksik ini.

 

Kata kunci: Gas toksik; germanen; grafin; silisen; teori fungsian ketumpatan

 

REFERENCES

Chan, K.T., Neaton, J.B. & Cohen, M.L. 2008. First-principles study of metal adatom adsorption on graphene. Physical Review B 77(23): 235430.

Dai, J., Yuan, J. & Giannozzi, P. 2009. Gas adsorption on graphene doped with B, N, Al, and S: A theoretical study. Applied Physics Letters 95(23): 232105.

Dávila, M.E., Xian, L., Cahangirov, S., Rubio, A. & Le Lay, G. 2014. Germanene: A novel two-dimensional germanium allotrope akin to graphene and silicene. New Journal of Physics 16(9): 095002.

Feng, B., Ding, Z., Meng, S., Yao, Y., He, X., Cheng, P., Chen, L. &  Wu, K. 2012. Evidence of silicene in honeycomb structures of silicon on Ag(111). Nano Letters 12(7): 3507-3511.

Feng, J.W., Liu, Y.J., Wang, H.X., Zhao, J.X., Cai, Q.H. & Wang, X.Z. 2014. Gas adsorption on silicene: A theoretical study. Computational Materials Science 87: 218-226.

Fleurence, A., Friedlein, R., Ozaki, T., Kawai, H., Wang, Y. & Yamada-Takamura, Y. 2012. Experimental evidence for epitaxial silicene on diboride thin films. Physical Review Letters 108(24): 245501.

Giannozzi, P., Baroni, S., Bonini, N., Calandra, M., Car, R., Cavazzoni, C., Ceresoli, D., Chiarotti, G.L., Cococcioni, M., Dabo, I., Dal Corso, A., de Gironcoli, S., Fabris, S., Fratesi, G., Gebauer, R., Gerstmann, U., Gougoussis, C., Kokalj, A., Lazzeri, M., Martin-Samos, L., Marzari, N., Mauri, F., Mazzarello, R., Paolini, S., Pasquarello, A., Paulatto, L., Sbraccia, C., Scandolo, S., Sclauzero, G., Seitsonen, A.P., Smogunov, A., Umari, P. & Wentzcovitch, R.M. 2009. QUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materials. Journal of Physics: Condensed Matter 21(39): 395502.

Grimme, S. 2006. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. Journal of Computational Chemistry 27(15): 1787-1799.

Hamid, M.A.B., Chan, K.T., Raymond Ooi, C.H., Zainuddin, H., Mohd Shah, N. & Shahrol Nidzam, N.N. 2021. Structural stability and electronic properties of graphene/germanene heterobilayer. Results in Physics 28: 104545.

Lalmi, B., Oughaddou, H., Enriquez, H., Kara, A., Vizzini, S., Ealet, B. & Aufray, B. 2010. Epitaxial growth of a silicene sheet. Applied Physics Letters 97(22): 223109.

Leenaerts, O., Partoens, B. & Peeters, F.M. 2008. Adsorption of H2O,NH3, CO,NO2, and NO on graphene: A first-principles study. Physical Review B 77(12): 125416.

Li, L., Lu, S.Z., Pan, J., Qin, Z., Wang, Y.Q., Wang, Y., Cao, G.Y., Du, S. & Gao, H.J. 2014. Buckled germanene formation on Pt(111). Advanced Materials 26(28): 4820-4824.

Li, S.S. 2012. Semiconductor Physical Electronics. 2nd ed. Springer Science & Business Media.

Li, W., Sheng, S., Chen, J., Cheng, P., Chen, L. & Wu, K. 2016. Ordered chlorinated monolayer silicene structures. Physical Review B 93(15): 155410.

Liu, X.Y., Zhang, J.M. & Xu, K.W. 2014. Chlorine molecule adsorbed on graphene and doped graphene: A first-principle study. Physica B: Condensed Matter 436: 54-58.

Lowdin, P.O. 1970. Advances in Quantum Chemistry. Vol. 5. Elsevier.

Ma, L., Zhang, J.M., Xu, K.W. & Ji, V. 2015. A first-principles study on gas sensing properties of graphene and Pd-doped graphene. Applied Surface Science 343: 121-127.

Meng, L., Wang, Y., Zhang, L., Du, S., Wu, R., Li, L., Zhang, Y., Li, G., Zhou, H., Hofer, W.A. & Gao, H.J. 2013. Buckled silicene formation on Ir(111). Nano Letters 13(2): 685-690.

Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Katsnelson, M.I., Grigorieva, I.V., Dubonos, S.V. & Firsov, A.A. 2005. Two-dimensional gas of massless Dirac fermions in graphene. Nature 438(7065): 197-200.

Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V. & Firsov, A.A. 2004. Electric field effect in atomically thin carbon films. Science 306(5696): 666-669.

Patel, K., Roondhe, B., Dabhi, S.D. & Jha, P.K. 2018. A new flatland buddy as toxic gas scavenger: A first principles study. Journal of Hazardous Materials 351: 337-345.

Pham, K.D., Ly, T.H., Vu, T.V., Hai, L.L., Nguyen, H.T.T., Le, P.T.T. & Khyzhun, O.Y. 2020. Gas adsorption properties (N2, H2, O2, NO, NO2, CO, CO2, and SO2) on a Sc2CO2 monolayer: A first-principles study. New Journal of Chemistry 44(43): 18763-18769.

Raya, S.S., Ansari, A.S. & Shong, B. 2021. Adsorption of gas molecules on graphene, silicene, and germanene: A comparative first-principles study. Surfaces and Interfaces 24: 101054.

Schedin, F., Geim, A.K., Morozov, S.V., Hill, E.W., Blake, P., Katsnelson, M.I. & Novoselov, K.S. 2007. Detection of individual gas molecules adsorbed on graphene. Nature Materials 6(9): 652-655.

Sholl, D.S. & Steckel, J.A. 2009. Density Functional Theory: A Practical Introduction. John Wiley & Sons.

Thi Thu Hanh, T., Minh Phi, N. & Van Hoa, N. 2020. Hydrogen adsorption on two-dimensional germanene and its structural defects: An ab initio investigation. Physical Chemistry Chemical Physics 22(14): 7210-7217.

Tian, W., Liu, X. & Yu, W. 2018. Research progress of gas sensor based on graphene and its derivatives: A review. Applied Sciences 8(7): 1118.

Wang, W., Zhang, Y., Shen, C. & Chai, Y. 2016. Adsorption of CO molecules on doped graphene: A first-principles study. AIP Advances 6(2): 025317.

Xia, W., Hu, W., Li, Z. & Yang, J. 2014. A first-principles study of gas adsorption on germanene. Physical Chemistry Chemical Physics 16(41): 22495-22498.

Yang, S., Jiang, C. & Wei, S.H. 2017. Gas sensing in 2D materials. Applied Physics Reviews 4(2): 021304.

Yang, S., Lei, G., Xu, H., Xu, B., Li, H., Lan, Z., Wang, Z. & Gu, H. 2019. A DFT study of CO adsorption on the pristine, defective, In-doped and Sb-doped graphene and the effect of applied electric field. Applied Surface Science 480: 205-211.

Yu, S., Li, X.D., Wu, S.Q., Wen, Y.H., Zhou, S. & Zhu, Z.Z. 2014. Novel electronic structures of superlattice composed of graphene and silicene. Materials Research Bulletin 50: 268-272.

Zhang, X., Wang, J., Chen, D. & Liu, L. 2021. The adsorption performance of harmful gas on Cu doped WS2: A first-principle study. Materials Today Communications 28: 102488.

Zhang, X., Yu, L., Wu, X. & Hu, W. 2015. Experimental sensing and density functional theory study of H2S and SOF2 adsorption on Au-Modified Graphene. Advanced Science 2(11): 1500101.

 

*Corresponding author; email: chankt@upm.edu.my

 

 

 

previous