Sains Malaysiana 52(3)(2023): 967-979

http://doi.org/10.17576/jsm-2023-5203-20

 

Decellularized and Genipin Crosslinked Human Umbilical Cord Artery and Vein for Potential Use as Peripheral Nerve Conduit

(Pautan Silang Arteri dan Urat Tali Pusat Manusia Dinyahsel dan Genipin untuk Potensi Kegunaan sebagai Konduit Saraf Periferi)

 

NABILA SYAHIDA BINTI ZAILAN1, NISRIENA AZLIN BINTI MD ISA1, MUHAMMAD ASYRAF BIN HUMAYOON KABIR1, SYAHIDA RABIA BINTI SYED ALI1, MUHAMAD FIRDAUS BIN NORISMAN1, SITI A. M. IMRAN1, MOHAMAD FIKERI ISHAK1, MOHD REUSMAAZRAN YUSOF2 & YOGESWARAN LOKANATHAN1,*

 

1Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latiff, Bandar Tun Razak, 56000 Cheras, Kuala Lumpur, Federal Territory, Malaysia

2Industrial Technology Division (BTI), Malaysian Nuclear Agency, Bangi, 43000 Kajang, Selangor Darul Ehsan, Malaysia

 

Received: 30 November 2022/Accepted: 3 February 2023

 

Abstract

Critical gap peripheral nerve injury, commonly caused by motor vehicle accidents, results in dysfunctional nerve and impaired body function. Our study aims to develop a conduit from decellularized and genipin crosslinked human umbilical cord artery and vein for future use in critical nerve gap injury treatments. Human umbilical cord arteries (HUCA) and veins (HUCV) were divided into native (nHUCA and nHUCV), decellularized (dHUCA and dHUCV) and genipin-crosslinked (clHUCA and clHUCV) groups. Both the decellularized and crosslinked groups were decellularized, and subsequently, the clHUCA and clHUCV groups were crosslinked with 0.1%, 0.4% and 0.7% (w/v) genipin. The HUCA and HUCV were then studied for decellularization efficiency, crosslinking index, biodegradation, swelling ratio, ultrastructure analysis, flexibility and mechanical strength. In addition, mesenchymal stem cells isolated from Wharton’s jelly were seeded into HUCA and HUCV for biocompatibility studies. The degradation test showed that nHUCV and dHUCV degraded at day 7 compared to other groups that did not show any degradation even after 21 days. Biocompatibility studies showed that the conduits crosslinked with 0.4% (w/v) genipin were successfully seeded and was having the most amount of seeded cells. In conclusion, the decellularization and genipin crosslinking of human umbilical cord artery and vein enabled successful in fabrication of conduit with suitable properties such as reduced swelling, flexibility, porosity and mechanical strength, with potential in tissue engineering applications.

 

Keywords: Decellularization; genipin; nerve conduit; nerve injury; umbilical cord artery

 

Abstrak

Kecederaan saraf periferi jurang kritikal, biasanya disebabkan oleh kemalangan kenderaan bermotor mengakibatkan saraf tidak berfungsi dan fungsi badan akan terjejas. Kajian ini bertujuan untuk membangunkan konduit daripada arteri dan urat tali pusat manusia yang dinyahsel dan genipin untuk kegunaan masa hadapan dalam rawatan kecederaan jurang saraf kritikal. Arteri tali pusat manusia (HUCA) dan urat (HUCV) dibahagikan kepada kumpulan asli (nHUCA dan nHUCV), dinyahsel (dHUCA dan dHUCV) dan pautan silang genipin (clHUCA dan clHUCV). Kedua-dua kumpulan dinyahsel dan pautan silang telah dinyahsel dan seterusnya, kumpulan clHUCA dan clHUCV telah dipaut silang dengan 0.1%, 0.4% dan 0.7% (w/v) genipin. HUCA dan HUCV kemudiannya dikaji untuk kecekapan dinyahsel, indeks paut silang, biodegradasi, nisbah bengkak, analisis ultrastruktur, kefleksibelan dan kekuatan mekanikal. Di samping itu, sel stem mesinkima yang diasingkan daripada jeli Wharton telah disemai ke dalam HUCA dan HUCV untuk kajian biokeserasian. Ujian degradasi menunjukkan nHUCV dan dHUCV merosot pada hari ke-7 berbanding kumpulan lain yang tidak menunjukkan sebarang degradasi walaupun selepas 21 hari. Kajian biokeserasian menunjukkan bahawa konduit yang dipaut silang dengan genipin 0.4% (w/v) berjaya dibenih dan mempunyai jumlah sel yang paling banyak. Kesimpulannya, dinyahsel dan pautan silang genipin arteri dan urat tali pusat manusia telah berjaya menghasilkan konduit dengan sifat yang sesuai seperti mengurangkan bengkak, kefleksibelan, keliangan dan kekuatan mekanikal dengan potensi dalam aplikasi kejuruteraan tisu.

 

Kata kunci: Arteri tali pusat; dinyahsel; genipin; kecederaan saraf; konduit saraf

 

REFERENCES

Badylak, S.F., Freytes, D.O. & Gilbert, T.W. 2009. Extracellular matrix as a biological scaffold material: Structure and function. Acta Biomaterialia 5(1): 1-13.

Clements, B.A., Bushman, J., Murthy, N.S., Ezra, M., Pastore, C.M. & Kohn, J. 2016. Design of barrier coatings on kink-resistant peripheral nerve conduits. Journal of Tissue Engineering 7: 2041731416629471.

Crouzier, T., McClendon, T., Tosun, Z. & McFetridge, P.S. 2009. Inverted human umbilical arteries with tunable wall thicknesses for nerve regeneration. Journal of Biomedical Materials Research Part A 89A(3): 818-828.

Deal, N.D., Griffin, J.W. & Hogan, M.V. 2012. Nerve conduits for nerve repair or reconstruction.  Journal of the American Academy of Orthopaedic Surgeons 20(2): 63-68.

Geuna, S., Tos, P., Titolo, P., Ciclamini, D., Beningo, T. & Battiston, B. 2014. Update on nerve repair by biological tubulization. Journal of Brachial Plexus and Peripheral Nerve Injury 9(01): e16-e21.

Gobinathan, S., Zainol, S.S., Azizi, S.F., Iman, N.M., Muniandy, R., Hasmad, H.N., Yusof, M.R.b., Husain, S., Abd Aziz, H. & Lokanathan, Y. 2018. Decellularization and genipin crosslinking of amniotic membrane suitable for tissue engineering applications. Journal of Biomaterials Science, Polymer Edition 29(17): 2051-2067.

Gordon, T., Sulaiman, O. & Boyd, J.G. 2003. Experimental strategies to promote functional recovery after peripheral nerve injuries. Journal of the Peripheral Nervous System 8(4): 236-250.

Hussin, H.M., Idrus, R.H. & Lokanathan, Y. 2018. Development of nerve conduit using decellularized human umbilical cord artery seeded with Centella asiatica induced-neurodifferentiated human mesenchymal stem cell.  Sains Malaysiana 47(11): 2789-2798.

Hwang, M.N. & Ederer, G.M. 1975. Rapid hippurate hydrolysis method for presumptive identification of group B streptococci. Journal of Clinical Microbiology 1(1): 114-115.

Kaizawa, Y., Kakinoki, R., Ikeguchi, R., Ohta, S., Noguchi, T., Takeuchi, H., Oda, H., Yurie, H. & Matsuda, S. 2017. A nerve conduit containing a vascular bundle and implanted with bone marrow stromal cells and decellularized allogenic nerve matrix.  Cell Transplantation 26(2): 215-228.

Lai, J.Y., Li, Y.T., Cho, C.H. & Yu, T.C. 2012. Nanoscale modification of porous gelatin scaffolds with chondroitin sulfate for corneal stromal tissue engineering. International Journal of Nanomedicine 7: 1101.

Liao, I.C., Wan, H., Qi, S., Cui, C., Patel, P., Sun, W. & Xu, H. 2013. Preclinical evaluations of acellular biological conduits for peripheral nerve regeneration. Journal of Tissue Engineering 4: 2041731413481036.

Lim, J., Razi, Z.R.M., Law, J., Nawi, A.M., Idrus, R.B.H. & Ng, M.H. 2016. MSCs can be differentially isolated from maternal, middle and fetal segments of the human umbilical cord. Cytotherapy 18(12): 1493-1502.

Lokanathan, Y., Ng, M.H., Hasan, S., Ali, A., Mahmod, M., Htwe, O., Roohi, S.A., Idrus, R.B.H., Abdullah, S. & Naicker, A.S. 2014. Olfactory ensheathing cells seeded muscle-stuffed vein as nerve conduit for peripheral nerve repair: A nerve conduction study. Journal of Bioscience and Bioengineering 118(2): 231-234.

Massaro, M.S., Pálek, R., Rosendorf, J., Červenková, L., Liška, V. & Moulisová, V. 2021. Decellularized xenogeneic scaffolds in transplantation and tissue engineering: Immunogenicity versus positive cell stimulation. Materials Science and Engineering: C 127: 112203.

Mirmalek-Sani, S.H., Sullivan, D.C., Zimmerman, C., Shupe, T.D. & Petersen, B.E. 2013. Immunogenicity of decellularized porcine liver for bioengineered hepatic tissue. The American Journal of Pathology 183(2): 558-565.

Muheremu, A. & Ao, Q. 2015. Past, present, and future of nerve conduits in the treatment of peripheral nerve injury. BioMed Research International 2015: 237507.

Ott, H.C., Matthiesen, T.S., Goh, S.K., Black, L.D., Kren, S.M., Netoff, T.I. & Taylor, D.A. 2008. Perfusion-decellularized matrix: using nature's platform to engineer a bioartificial heart.  Nature Medicine 14(2): 213-221.

Sun, F., Zhou, K., Mi, W.J. & Qiu, J.H. 2011. Combined use of decellularized allogeneic artery conduits with autologous transdifferentiated adipose-derived stem cells for facial nerve regeneration in rats. Biomaterials 32(32): 8118-8128.

Tomasula, P.M. 2009. Using dairy ingredients to produce edible films and biodegradable packaging materials. In Dairy-Derived Ingredients, edited by Corredig, M. Woodhead Publishing. pp. 589-624.

Wojtkiewicz, D.M., Saunders, J., Domeshek, L., Novak, C.B., Kaskutas, V. & Mackinnon, S.E. 2015. Social impact of peripheral nerve injuries. Hand 10(2): 161-167.

Wood, M.D., Kemp, S.W., Weber, C., Borschel, G.H. & Gordon, T. 2011. Outcome measures of peripheral nerve regeneration. Annals of Anatomy-Anatomischer Anzeiger 193(4): 321-333.

Yoo, J.S., Kim, Y.J., Kim, S.H. & Choi, S.H. 2011. Study on genipin: A new alternative natural crosslinking agent for fixing heterograft tissue. The Korean Journal of Thoracic and Cardiovascular Surgery 44(3): 197.

Yuan, Y., Chesnutt, B., Utturkar, G., Haggard, W., Yang, Y., Ong, J. & Bumgardner, J. 2007. The effect of cross-linking of chitosan microspheres with genipin on protein release.  Carbohydrate Polymers 68(3): 561-567.

Zhan, X., Gao, M., Jiang, Y., Zhang, W., Wong, W.M., Yuan, Q., Su, H., Kang, X., Dai, X. & Zhang, W. 2013. Nanofiber scaffolds facilitate functional regeneration of peripheral nerve injury. Nanomedicine: Nanotechnology, Biology and Medicine 9(3): 305-315.

 

*Corresponding author; email: lyoges@ppukm.ukm.edu.my

 

 

 

 

 

previous