Sains Malaysiana 52(5)(2023): 1557-1565

http://doi.org/10.17576/jsm-2023-5205-17

 

Powder Injection Moulded Ti6Al4V-HA Composite for Implants

(Pengacuan Suntikan Serbuk Komposit Ti6Al4V-HA untuk Implan)

 

NURUL NADIAH MAHMUD1,4,*, ABU BAKAR SULONG2 & KEI AMEYAMA3

 

1Research Organization of Science and Technology, Ritsumeikan University, 1-1-1 Noji Higashi, Kusatsu City, Shiga, 525-8577, Japan

2Department of Mechanical and Manufacturing Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

3Department of Mechanical Engineering, Ritsumeikan University, 1-1-1 Noji Higashi, Kusatsu City, Shiga, 525-8577, Japan

4Universiti Kuala Lumpur Malaysia France Institute, 43650 Bandar Baru Bangi, Selangor Darul Ehsan, Malaysia

 

Received: 4 November 2022/Accepted: 11 April 2023

 

Abstract

Powder injection moulding (PIM) is widely used to produce complex shapes of Titanium and its alloys. Ti6Al4V-HA feedstocks at 63, 64 and 66 vol.% were produced by combining a Ti6Al4V-HA powder mixture (90:10 wt.%) with a binder system containing palm stearin (PS) and low-density polyethylene (LDPE). Binder system consisted with 60 wt.% of PS and 40 wt.% of LDPE. All powder loading materials were successfully injection moulded into the shape of a tension bar. Following that, all powder loadings were successfully debound in solvent and thermal methods. Based on SEM observation that 66 vol.% powder loading demonstrated homogenized distribution of powder and binder. Hence, 66 vol.% powder loading was selected for further process sintering at 1300 ºC, and its bending strength was evaluated. Sintered Ti6Al4V-HA with porous structure has Young’s modulus of 11 GPa, within the Young modulus of bone (10 to 30 GPa). The results of this study indicate that sintered Ti6Al4V-HA has potential as an implant material.

 

Keywords:  Composite; hydroxyapatite; powder injection moulding; Ti6Al4V

 

Abstrak

Pengacuan suntikan serbuk (PIM) digunakan secara meluas untuk menghasilkan bentuk kompleks daripada Titanium dan aloinya. Bahan suapan Ti6Al4V-HA pada 63, 64 dan 66 vol.% dihasilkan dengan menggabungkan campuran serbuk Ti6Al4V-HA (90:10 wt.%) dengan sistem pengikat yang mengandungi stearin sawit (PS) dan polietilena berketumpatan rendah (LDPE). Sistem pengikat terdiri daripada 60 wt.% daripada PS dan 40 wt.% daripada LDPE. Semua pemuatan serbuk berjaya disuntik ke dalam bentuk bar regangan. Selepas itu, semua pemuatan serbuk berjaya dinyahikat dalam kaedah pelarut dan haba. Berdasarkan pemerhatian SEM, 66 vol.% pemuatan serbuk menunjukkan taburan serbuk dan pengikat yang homogen. Oleh itu, pemuatan serbuk 66 vol.% telah dipilih untuk proses selanjutnya pensinteran pada 1300 ºC dan kekuatan lenturnya dinilai. Jasad sinter mempunyai modulus Young yang diperoleh adalah 11 GPa, berada dalam modulus Young tulang (10 sehingga 30 GPa). Hasil kajian ini menunjukkan jasad sinter Ti6Al4V-HA mempunyai potensi untuk digunakan sebagai bahan implan.

 

Kata kunci: Hidrosiapatit; komposit; pengacuan suntikan serbuk; Ti6Al4V

 

REFERENCES

Abdoos, H., Khorsand, H. & Yousefi, A.A. 2014. Torque rheometry and rheological analysis of powder–Polymer mixture for aluminum powder injection molding. Iranian Polymer Journal (English Edition) 23(10): 745-755. https://doi.org/10.1007/s13726-014-0268-1

Amir Arifin, Abu Bakar Sulong, Norhamidi Muhamad, Junaidi Syarif & Mohd Ikram Ramli. 2014. Material processing of hydroxyapatite and titanium alloy (HA/Ti) composite as implant materials using powder metallurgy: A review. Materials and Design 55: 165-175. https://doi.org/10.1016/j.matdes.2013.09.045

Brentel, A.S., de Vasconcellos, L.M.R., de Vasconcellos, L.G.O., Oliveira, M.V., Cairo, C.A.A., de Alencastro Graca, M.L. & Carvalho, Y.R. 2006. Histomorphometric analysis of pure titanium implants with porous surface versus rough surface. Journal of Applied Oral Science 14(3): 213-218.

Chen, L-J., Li, T., Li, Y-M., He, H. & Hu, Y-H. 2009. Porous titanium implants fabricated by metal injection molding. Transactions of Nonferrous Metals Society of China 19(5): 1174-1179.

Chin, K.L.J., Chuan, Y.L., Ramesh, S. & Sivakumar, S. 2015. The sinterability of hydroxyapatite bioceramics after undergoing pre-heat treatment. Journal of Engineering Science and Technology (Special Issue on SOMCHE 2014 & RSCE 2014 Conference. pp. 83-90.

Crosby, K., Shaw, L.L., Estournes, C., Chevallier, G., Fliflet, A.W. & Imam, M.A. 2014. Enhancement in Ti-6Al-4V sintering via nanostructured powder and spark plasma sintering. Powder Metallurgy 57(2): 147-154. https://doi.org/10.1179/1743290113Y.0000000082

Dutta Majumdar, D., Chowdhury, A.R. & Ghosh, M. 2018. Titanium and its alloys for bio-implant applications. IIM Metal News 21: 6-9. https://doi.org/10.1002/3527602119.ch16

Eliaz, N. 2019. Corrosion of metallic biomaterials: A review. Materials 12(3): 407. https://doi.org/10.3390/ma12030407

Esen, Z. & Bor, S. 2011. Characterization of Ti – 6Al – 4V alloy foams synthesized by space holder technique. Materials Science and Engineering A 528: 3200-3209. https://doi.org/10.1016/j.msea.2011.01.008

Faezeh Dalili, Rouhollah Mehdinavaz Aghdam, Reza Soltani & Mohsen Saremi. 2022. Corrosion, mechanical and bioactivity properties of HA-CNT nanocomposite coating on anodized Ti6Al4V alloy. Journal of Materials Science: Materials in Medicine 33: Article No. 34. https://doi.org/10.1007/s10856-022-06655-6

Farhana Mohd Foudzi, Norhamidi Muhamad, Abu Bakar Sulong & Hafizawati Zakaria. 2013. Yttria stabilized zirconia formed by micro ceramic injection molding: Rheological properties and debinding effects on the sintered part. Ceramics International 39(3): 2665-2674. https://doi.org/10.1016/j.ceramint.2012.09.033

German, R..M. & Bose, A. 1997. Injection Molding of Metals and Ceramics. Princeton, New Jersey: Metal Powder Industries Federation.

Hausnerova, B., Kitano, T., Kuritka, I., Prindis, J. & Marcanikova, L. 2011. The role of powder particle size distribution in the processability of powder injection molding compounds. International Journal of Polymer Analysis and Characterization 16(2): 141-151. https://doi.org/10.1080/1023666X.2011.547047

Hung, I.M., Shih, W.J., Hon, M.H. & Wang, M.C. 2012. The properties of sintered calcium phosphate with [Ca]/[P] = 1.50. International Journal of Molecular Sciences 13: 13569-13586. https://doi.org/10.3390/ijms131013569

Kohri, M., Cooper, E.P., Ferracane, J.L. & Waite, D.F. 1990. Comparative study of hydroxyapatite and titanium dental implants in dogs. Journal Oral Maxillofacial and Surgery 48: 1265-1273.

Krishna, E.S. & Suresh, G. 2022. Bioactive titanium-hydroxyapatite composites by powder metallurgy route. Biointerface Research in Applied Chemistry 12(4): 5375-5383.

Lin, D., Park, J.M., Kang, T.G., Chung, S.T., Kwon, Y.S. & Park, S.J. 2018. Powder injection molding of Ti-6Al-4V alloy for defect-free high performance titanium parts with low carbon/oxygen contents. Key Engineering Materials 770: 189-194. https://doi.org/10.4028/www.scientific.net/KEM.770.189

Lu, J.X., Flautre, B., Anselme, K., Hardouin, P., Gallur, A., Descamps, M. & Thierry, B. 1999. Role of interconnections in porous bioceramics on bone recolonization in vitro and in vivo. Journal of Materials Science: Materials in Medicine 10: 111-120.

McGregor, D.B., Baan, R.A., Partensky, C., Rice, J.M. & Wilbourn, J.D. 2000. Evaluation of the carcinogenic risks to humans associated with surgical implants and other foreign bodies - A report of an IARC monographs programme meeting. European Journal of Cancer 36: 307-313. https://doi.org/10.1016/S0959-8049(99)00312-3

Meshalkin, V.P. & Belyakov, A.V. 2020. Methods used for the compaction and molding of ceramic matrix composites reinforced with carbon nanotubes. Processes 8: 1-37. https://doi.org/10.3390/PR8081004

Miranda, G., Araújo, A., Bartolomeu, F., Buciumeanu, M., Carvalho, O., Souza, J.C.M., Silva, F.S. & Henriques, B. 2016. Design of Ti6Al4V-HA composites produced by hot pressing for biomedical applications. Materials and Design 108: 488-493. https://doi.org/10.1016/j.matdes.2016.07.023

Mohd Yusuf Zakaria, Mohd Ikram Ramli, Abu Bakar Sulong, Norhamidi Muhamad & Muhammad Hussain Ismail. 2021. Application of sodium chloride as space holder for powder injection molding of alloy titanium–hydroxyapatite composites. Journal of Materials Research and Technology 12: 478-486. https://doi.org/10.1016/j.jmrt.2021.02.087

Najlaa Nazihah Mas’ood, Farhana Mohd Foudzi, Abu Bakar Sulong, Norhamidi Muhamad & Intan Fadhlina Mohamed. 2018. Two component materials in powder metallurgy: A review paper focused on the processing technique applied in powder metallurgy. Jurnal Kejuruteraan S1 1(6): 23-31.

Niespodziana, K. 2019. Synthesis and properties of porous Ti-20 Wt.% HA nanocomposites. Journal of Materials Engineering and Performance 28(2): 1-11. https://doi.org/10.1007/s11665-019-03966-8

Niinomi, M. 2002. Recent metallic materials for biomedical applications. Metallurgical and Materials Transactions A 33(3): 477-486.

Nurul Nadiah Mahmud, Sulong, A.B., Sharma, B. & Ameyama, K. 2021a. Presintered titanium-hydroxyapatite composite fabricated via pim route. Metals 11(2): 318. https://doi.org/10.3390/met11020318

Nurul Nadiah Mahmud, Farah ‘Atiqah Abdul Azam, Mohd Ikram Ramli, Farhana Mohd Foudzi, Kei Ameyama & Abu Bakar Sulong. 2021b. Rheological properties of irregular-shaped titanium-hydroxyapatite bimodal powder composite moulded by powder injection moulding. Journal of Materials Research and Technology 11: 2255-2264. https://doi.org/10.1016/j.jmrt.2021.02.016

Okazaki, Y. & Gotoh, E. 2005. Comparison of metal release from various metallic biomaterials in vitro. Biomaterials 26(1): 11-21. https://doi.org/10.1016/j.biomaterials.2004.02.005

Orlovskii, V.P., Komlev, V.S. & Barinov, S.M. 2002. Hydroxyapatite and hydroxyapatite-based ceramics. Inorganic Materials 38(10): 973-984. https://doi.org/10.1023/A:1020585800572

Otsuki, B., Takemoto, M., Fujibayashi, S., Neo, M., Kokubo, T. & Nakamura, T. 2006. Pore throat size and connectivity determine bone and tissue ingrowth into porous implants: Three-dimensional micro-CT based structural analyses of porous bioactive titanium implants. Biomaterials 27: 5892-5900. https://doi.org/10.1016/j.biomaterials.2006.08.013

Supati, R., Loh, N.H., Khor, K.A. & Tor, S.B. 2000. Mixing and characterization of feedstock for powder injection molding. Materials Letters 46(2-3): 109-114. https://doi.org/10.1016/S0167-577X(00)00151-8

Tecu, C., Antoniac, A., Goller, G., Gok, M.G., Manole, M., Mohan, A., Moldovan, H. & Earar, K. 2018. The sintering behaviour and mechanical properties of hydroxyapatite - Based composites for bone tissue regeneration. Revista de Chimie 69(5): 1272-1275. https://doi.org/10.37358/rc.18.5.6306

Thavanayagam, G., Pickering, K.L., Swan, J.E. & Cao, P. 2015. Analysis of rheological behaviour of titanium feedstocks formulated with a water-soluble binder system for powder injection moulding. Powder Technology 269: 227-232. https://doi.org/10.1016/j.powtec.2014.09.020

Thomas-vielma, P., Cervera, A., Levenfeld, B. & Varez, A. 2008. Production of alumina parts by powder injection molding with a binder system based on high density polyethylene. Journal of European Ceramic Society 28: 763-771. https://doi.org/10.1016/j.jeurceramsoc.2007.08.004

Xu, W., Lu, X., Muhammad Dilawer Hayat, Tian, J., Huang, C., Chen, M., Qu, X. & Wen, C. 2019. Fabrication and properties of newly developed Ti35Zr28Nb scaffolds fabricated by powder metallurgy for bone-tissue engineering. Journal of Materials Research and Technology 8(5): 3696-3704. https://doi.org/10.1016/j.jmrt.2019.06.021

Zhang, B.F., Otterstein, E. & Burkel, E. 2010. Spark plasma sintering, microstructures, and mechanical properties of macroporous titanium foams. Advanced Engineering Materials 9: 863-872. https://doi.org/10.1002/adem.201000106.

 

*Corresponding author; email: nn90.kawai@gmail.com

 

 

 

 

 

previous