Sains Malaysiana 34(1):  1-6 (2005)

 

Penghasilan Sirap Glukosa Berfruktosa Tinggi dari

Kanji Ubi Keledek Msp94

(Production of High Fructose Glucose Syrup from Sweet Potato MSP94 Starch)


Hasnah Haron

Jabatan Pemakanan dan Dietetik

Fakulti Sains Kesihatan Bersekutu

Universiti Kebangsaan Malaysia

Jalan Raja Muda Abdul Aziz

50300 Kuala Lumpur

 

Osman Hassan dan Mamot Said

Program Sains Makanan

Pusat Pengajian Sains Kimia dan Teknologi Makanan

Fakulti Sains dan Teknologi

Universiti Kebangsaan Malaysia

43600 UKM Bangi, Selangor D.E.

 

Mohamad Hanif Mohamad Jamil

Malaysia Agricultural Research And Development Institute Strategic

Environment and Natural Resources Research Centre

MARDI P.O. Box 12301

50774 Kuala Lumpur

 

 

 

ABSTRAK

 

Kajian ini merangkumi pencirian fizikokimia kanji yang diekstrak daripada ubi keledek Msp94 dan penghasilan sirap glukosa berfruktosa tinggi daripada kanji ini. Kanji ubi keledek Msp94 mengandungi 7.3% air, 0.2% protein, 0.4% lemak, 1.3% abu total, 94.8% karbohidrat total, 83.0% kanji dan 20.6% amilosa ketara. Purata saiz granul kanji adalah 13-14 mm, berbentuk bulat, poligon dan bentuk yang tidak tetap. Hidrolisis berenzim menggunakan gabungan enzim glukoamilase-pululanase dalam proses sakarifikasi, yang dijalankan ke atas kanji ubi keledek Msp94 selama 24, 48, 72 jam menghasilkan hidrolisat kanji dengan setaraan dekstrosa (DE) masing-masing pada 94.8, 99.1, 99.3. 1ni diikuti dengan kelikatan hidrolisat kanji yang semakin menurun. Penukaran kanji Msp94 kepada peratus glukosa adalah sebanyak 97.1 %, 109.5% dan 103.2% setelah dihidrolisis selama 24,48 dan 72 jam. Hidrolisat kanji Msp94 ditulenkan menggunakan tiga jenis resin penukar ion dan diisomer kepada sirap berfruktosa tinggi menggunakan enzim glukosa isomerase (Sweetzyme T). Kandungan fruktosa (43.8-46.5%) dalam sirap Msp94 yang telah diisomer adalah setara dengan kandunganfruktosa (44%) dalam sirap komersial, High Fructose Corn Syrup (HFCS) 42.

 

Kata kunci: hidrolisis kanji, pemanis, setaraan dekstrosa, sirap glukosa berfruktosa tinggi, ubi keledek Msp94

 

 

ABSTRACT

 

This study comprised of physicochemical characterizations of starch extracted from Msp94 sweet potato tuber and production of high fructose glucose syrup from the starch. Msp94 sweet potato starch consisted of 7.3% water, 0.2% protein, 0.4% fat, 1.3% total ash, 94.8% total carbohydrates, 83.0% starch and 20.6% apparent amylose. The starch granules were spherical, polygonal and irregular in shapes with the size of 13-14 mm. Enzymatic hydrolysis of Msp94 sweet potato starch for 24,48, 72 hours, using a mixture of amyglucosidase-pullulanase enzymes during saccharification process, produced starch hydrolysates with dextrose equivalent (DE) of 94.8, 99.1, 99.3 respectively. This is followed by reduction in viscosity of the starch hydrolysates. Conversion of the Msp94 starch to percent of glucose after hydrolysing for 24,48 and 72 hours were 97.1%, 109.5% and 103.2%, respectively. Msp94 starch hydrolysates was then purified using three types of ion exchange resins and isomerized to highfructose syrup using glucose isomerase enzyme (Sweetzyme T). Thefructose content in isomerized Msp94 syrup was (43.8-46.5%) was comparable to the fructose content (44%) in commercial High Fructose Corn Syrup (HFCS) 42.

 

Keywords: starch hydrolysis, sweetener, dextrose equivalent, high fructose glucose syrup, sweet potato Msp94

 

 

RUJUKAN/REFERENCES

 

Association of Official Analytical Chemists (AOAC). 1984. Separations of sugars in honey using HPLC. Official Methods of Analysis. 14th ed. USA: AOAC, Inc.

Association of Official Analytical Chemists (AOAC). 1990. Official Methods of Analysis. 15th ed. USA: AOAC, Inc.

Berghofer, E. & Sarhaddar, S. 1988. Production of glucose and high fructose syrup by enzymatic direct hydrolysis of cassava roots. Process Biochemistry December: 188-194.

Englyst, H.N. & Hudson, G.J. 1987. Colorimetric method for routine measurement of dietary fibre as non-polysaccharides. A comparison with gas liquid chromatography. Food Chemistry 24(1): 63-76.

Gallant, D.J. Bewa, H., Buy, Q.H., Bouchet, B., Szylit, O. & Sealy, L. 1982. On ultrastructural and nutritional aspects of some tropical tuber starches. Starch 34(8): 255-262.

Gantelet, H. & Duchiron, F. 1999. A new pullulanase from a hyperthermophilic archaeon for starch hydrolysis. Biotechnology Letters 21: 71-75

Gorinstein, S., Oates, E.G., Chang, S. M. & Lii, C.Y 1994. Enzymatic hydrolysis of sago starch. Food Chemistry 49:411-417.

Ishak Mohd. Yusuff & ZainaIAbidin Mohd. Yusof. SIRlM. 1995. High Fructose Glucose Syrup Production from sago starch: Lab scale study. Simposium Biologi Kebangsaan Kedua. 16­18 Mei, Universiti Kebangsaan Malaysia Bangi.

Jane, J., Kasemsuwan, T., Leas, S., lA, A., Zobel, H., IL, D. & Robyt, J.F. 1994. Anthology of Starch Granule Morphology by SEM. Starch 46: 121-129.

Khalid, N.M. & Markakis, P. 1981. Production of High Fructose Syrup from Cassava starch. The Quality of Foods and Beverages. Chemistry and Technology 1: 319-326.

Khatijah, I. & Patimah, H. 1997. Physico-chemical properties of cross-linked tuber starches. J. Trap. Agric. and Journal Tropical Agriculture and Food Science 25(2): 179-185.

Lii, E.Y. & Chang, YH. 1991. Study of starch in Taiwan. Food Reviews International 7(2): 185-203.

Madhusudhan, M., Susheelamma, N.S. & Tharanathan, R.N. 1993. Studies on sweet potato. Part II : Isolation and characterization of starch. Starch 45(1): 8-12.

Malaysia Standard. 1994. Specification for industrial tapioca starch. MS 155. MARDI. 1994. MSP 94. Klon Ubi Keledek Baru. K.L.: MARDI Publication.

Nebesny, E. 1989. Carbohydrate compositions and molecular structure of dextrins in enzymatic high conversion starch syrups. Starch 41(11): 431-435.

Nebesny, E. 1993. Changes of carbohydrates compositions during enzymatic hydrolysis of starches of various origin. Starch 45(12): 426-429.

Noda, T., Takahata, Y & Nagata, T. 1994. Properties of sweet potato starches from different tissue zones. Starch 44(10):365-368.

Novo NordiskApplication Sheet. 1991. Use of Sweetzyme T in the production of high fructose syrup. Enzyme Process Division. B 396c-GB 3000. May.

Olsen, H.S. 1995. Enzymatic production of glucose syrup. Dlm. Dziedzic, S.Z. & Kearsly, M.W. (pnyt), Handbook of Starch Hydrolysis Products and their Derivatives, hlm. 26. Glasgow: Blackie Academic & Professional.

Pontoh, L. & Low, N.H. 1995. Glucose syrup production from Indonesian palm and cassava starch. Food Research International 28: 379-385.

Schenck, F.w. & Hebeda, R.E. 1992. Starch Hydrolysis Products: An Introduction and History. In. Schenck, F.W. & Hebeda, R.E. (pnyt), Starch Hydrolysis Products. Worldwide Technology, Production and Applications, hlm. 1. New York:VCH Publishers.

Siti Mariam Md. Zaino 1998. Ubi keledek 'Gendut' pengganti kentang. Utusan Malaysia, 15 Disember: 2.

Svanholm, H. 1985. Production of high fructose syrup. Novo Enzymes R&D. A-05942-GB.

Swinkels, J.J.M. 1985. Composition and properties of commercial native starches. Starch 37(1): 1-5.

Tian, S .J., Rickard, J .E. & Blanshard J.M. V. 1991. Physicochemical Properties of Sweet Potato Starch. Journal of Science & Food Agriculture 57: 459-490.

Yaletudie, J.E., Colonna, P., Bouchet, B. & Gallant, D.J. 1993. Hydrolysis of tropical tuber starches by bacterial and pancreatic alpha amylases. Starch 45(8): 270-276.

William, P.E., Kuzina, F.D. & Hlynka, I. 1970. A rapid colorimetric procedure for estimating the amylose content of starches and flour. Cereal Chemistry 47: 411.