Sains Malaysiana 43(11)(2014): 1751–1759

 

Sintesis Nanozarah Kuprum dalam Larutan Kitosan Menggunakan Kaedah Sinaran Gama

(Synthesis of Copper Nanoparticles in Chitosan Aqueous System via Gamma Irradiation)

 

SHAHRUL IZWAN B. AHMAD1*, SHAHIDAN B. RADIMAN2 & MD. SOOT B. HJ AHMAD2

 

1Pusat Asasi Pertahanan, Universiti Pertahanan Nasional Malaysia, Kem Sg. Besi

57000 Kuala Lumpur, Malaysia

 

2Pusat Pengajian Fizik Gunaan, Fakulti Sains dan Teknologi, Universiti Kebangsaan Malaysia

46300 Bangi, Selangor, Malaysia

 

Diserahkan: 17 Januari 2013/Diterima: 11 Mac 2014

 

ABSTRAK

Kesan penggunaan kitosan terhadap nanozarah kuprum (Cu) yang disintesis menggunakan sinaran gama sebagai sumber agen penurunan telah dijalankan dalam sistem akues. Dos sinaran terserap yang digunakan adalah 50 kGy manakala penambahan isopropanol adalah penting sebagai penggarut kepada radikal pengoksidaan serta meningkatkan peranan agen penurun yang terhasil daripada proses radiolisis. Analisis serapan optik-UV telah mencirikan sifat optik larutan nanozarah Cu yang disintesis. Ketulenan fasa kristal nanozarah Cu yang terbentuk dalam matrix kitosan telah dibuktikan dengan pembelauan sinar-X (XRD). Berdasarkan imej mikroskop imbasan elektron (TEM), nanozarah Cu yang terhasil adalah berbentuk sfera dengan julat saiz 6-10 nm kecuali nanozarah Cu yang disintesis dalam kepekatan kitosan 0.3% w/v yang menunjukkan taburan bentuk yang tidak sekata. Analisis spektrofotometer transformasi Fourier inframerah (FTIR) yang dijalankan telah mengesahkan kehadiran sebatian kitosan dalam sampel nanozarah Cu dengan kepekatan kitosan 0.1 dan 0.3% w/v. Kajian ini mendapati penggunaan kitosan dapat melindungi nanozarah Cu daripada pengoksidaan oleh persekitaran. Saiz nanozarah juga didapati meningkat seiring dengan peningkatan kepekatan kitosan yang digunakan.

 

Kata kunci: Kitosan; nanozarah kuprum; sinar gama; sistem akues

 

ABSTRACT

The effect of chitosan concentration on the copper (Cu) nanoparticles synthesized using gamma irradiation as the source of reducing agent in aqueous system is studied. The total absorbed dose used was 50 kGy while the addition of isopropanol is crucial as scavenger of oxidation radical and to increase the role of reducing agent produced from the radiolysis process. Optical properties of Cu nanoparticles synthesized were characterized using UV-visible spectroscopy. The pure crystal phase of Cu nanoparticles formed in chitosan matrix was proved using X-ray diffractometer (XRD). According to transmission electron microscope (TEM) images, all Cu nanoparticles produced are in spherical shape and their size are in the range of 6-10 nm except that for Cu nanoparticles synthesized in 0.3% w/v chitosan concentration which showed non-uniform shaped distribution. Fourier transform infrared (FTIR) analysis showed the presence of chitosan compound for sample of 0.1 and 0.3% w/v chitosan concentration. This study showed that the use of chitosan can protect Cu nanoparticles from oxidation of the environment. It is also found that, the size of nanoparticles increase based on concentration of chitosan used.

 

Keywords: Aqueous system; chitosan; copper nanoparticles; gamma irradiation

RUJUKAN

Carson, P. & Mumford, C. 2002. Hazardous Chemicals Handbook. Ed. ke-2. Woburn, MA: Butterworth-Heinemann.

Chen, Q., Shen, X. & Gao, H. 2007. Formation of nanoparticles in water-in-oil microemulsions controlled by the yield of hydrated electron: The controlled reduction of Cu2+. Journal of Colloid and Interface Science 308(2): 491-499.

Chmielewski, A.G. 2010. Chitosan and radiation chemistry. Radiation Physics and Chemistry 79(3): 272-275.

De Waele, V., Kecht, J., Tahri, Z., Mostafavi, M., Bein, T. & Mintova, S. 2007. Diverse copper clusters confined in microporous nanocrystals. Sensors and Actuators B: Chemical 126(1): 338-343.

Feng, J. & Zhang, C.P. 2006. Preparation of Cu-Ni alloy nanocrystallites in water-in-oil microemulsions. Journal of Colloid and Interface Science 293(2): 414-420.

Hara, M., Kondo, T., Komoda, M., Ikeda, S., Kondo, J.N., Domen, K., Shinohara, K. & Tanaka, A. 1998. Cu2O as a photocatalyst for overall water splitting under visible light irradiation. Chemical Communications 3: 357-358.

Huang, N.M., Radiman, S., Lim, H.N., Khiew, P.S., Chiu, W.S., Lee, K.H., Syahida, A., Hashim, R. & Chia, C.H. 2009. Gamma-ray assisted synthesis of silver nanoparticles in chitosan solution and the antibacterial properties. Chemical Engineering Journal 155(1-2): 499-507.

Kang, B., Chang, S-Q., Dai, Y-D. & Chen, D. 2007. Radiation synthesis and magnetic properties of novel Co0.7Fe0.3/ Chitosan compound nanoparticles for targeted drug carrier. Radiation Physics and Chemistry 76(6): 968-973.

Kang, Y.T., Kim, H.J. & Lee, K.I. 2008. Heat and mass transfer enhancement of binary nanofluids for H2O/LiBr falling film absorption process. International Journal of Refrigeration 31(5): 850-856.

Kim, Y.H., Lee, D.K., Jo, B.G., Jeong, J.H. & Kang, Y.S. 2006. Synthesis of oleate capped Cu nanoparticles by thermal decomposition. Colloids and Surfaces A: Physicochemical and Engineering Aspects 284-285(0): 364-368.

Krkljes, A.N., Marinovic-Cincovic, M.T., Kacarevic-Popovic, Z.M. & Nedeljkovic, J.M. 2007. Radiolytic synthesis and characterization of Ag-PVA nanocomposites. European Polymer Journal 43(6): 2171-2176.

Li, J., Liu, C-Y. & Xie, Z. 2011. Synthesis and surface plasmon resonance properties of carbon-coated Cu and Co nanoparticles. Materials Research Bulletin 46(5): 743-747.

Li, Z., Du, Y., Zhang, Z. & Pang, D. 2003. Preparation and characterization of CdS quantum dots chitosan biocomposite. Reactive and Functional Polymers 55(1): 35-43.

Liu, M.S., Lin, M.C.C., Tsai, C.Y. & Wang, C.C. 2006. Enhancement of thermal conductivity with Cu for nanofluids using chemical reduction method. International Journal of Heat and Mass Transfer 49(17-18): 3028-3033.

Lo, S.H.Y., Wang, Y.Y. & Wan, C.C. 2007. Synthesis of PVP stabilized Cu/Pd nanoparticles with citrate complexing agent and its application as an activator for electroless copper deposition. Journal of Colloid and Interface Science 310(1): 190-195.

Luo, Y., Tu, Y., Ren, Q., Dai, X., Xing, L. & Li, J. 2009. Surfactant-free fabrication of Cu2O nanosheets from Cu colloids and their tunable optical properties. Journal of Solid State Chemistry 182(1): 182-186.

Mallick, K., Witcomb, M.J. & Scurrell, M.S. 2005. Preparation and characterization of a conjugated polymer and copper nanoparticle composite material: A chemical synthesis route. Materials Science and Engineering: B 123(2): 181-186.

McCormick, J.M. 2010. Typical Vibrational Frequencies for Inorganic Species1. http://www2.truman.edu/~jmccormi/ Chem475/Laboratory/VibrationalFrequencies.htm (On-line Laboratory Manual for First-Year Chemistry)

Miao, W., Liu, H., Zhang, Z. & Chen, J. 2008. Large-scale growth and shape evolution of micrometer-sized Cu2O cubes with concave planes via γ-irradiation. Solid State Sciences 10(10): 1322-1326.

Moores, A. & Goettmann, F. 2006. The plasmon band in noble metal nanoparticles: An introduction to theory and applications. New Journal of Chemistry 30(8): 1121-1132.

Nawi, M.A., Jawad, A.H., Sabar, S. & Ngah, W.S.W. 2011. Photocatalytic-oxidation of solid state chitosan by immobilized bilayer assembly of TiO2-chitosan under a compact household fluorescent lamp irradiation. Carbohydrate Polymers 83(3): 1146-1152.

Park, B.K., Kim, D., Jeong, S., Moon, J. & Kim, J.S. 2007. Direct writing of copper conductive patterns by ink-jet printing. Thin Solid Films 515(19): 7706-7711.

Qiu, S., Dong, J. & Chen, G. 1999. Preparation of Cu nanoparticles from water-in-oil microemulsions. Journal of Colloid and Interface Science 216(2): 230-234.

Safee, N.H.A. 2007. Penyediaan kitosan-glutardialdehid dan kajian kesan pH dan kepekatan terhadap penjerapan Cd (II), Zn (II) dan Ni(II) dalam larutan nitrat dan sulfat.Tesis Ijazah Sarjana Muda. Universiti Kebangsaan Malaysia (tidak diterbitkan).

Samim, M., Kaushik, N.K. & Maitra, A. 2007. Effect of size of copper nanoparticles on its catalytic behaviour in Ullman reaction. Bulletin of Material Science 30(5): 535-540.

Spinks, J.W.T. & Woods, R.J. 1964. An Introduction to Radiation Chemistry. Ed. ke-3. New York: John Wiley & Sons, Inc.

Tang, X.I., Ren, L., Sun, L.N., Tian, W.G., Cao, M.H. & Hu, C.W. 2006. A solvothermal route to Cu2O nanocubes and Cu nanoparticles. Chemical Research in Chinese Universities 22(5): 547-551.

Wang, F., Bi, Q.L., Wang, X.B. & Liu, W.M. 2008. Sliding friction and wear performance of Ti6Al4V in the presence of surface-capped copper nanoclusters lubricant. Tribology International 41(3): 158-165.

Wang, Y.X., Tang, X.F. & Yang, Z.G. 2011. A novel wet-chemical method of preparing highly monodispersed Cu2O nanoparticles. Colloids and Surfaces A: Physicochemical and Engineering Aspects 388(1-3): 38-40.

Wu, S.H. & Chen, D.H. 2004. Synthesis of high-concentration Cu nanoparticles in aqueous CTAB solutions. Journal of Colloid and Interface Science 273(1): 165-169.

Xu, J.Z., Xu, S., Geng, J., Li, G.X. & Zhu, J.J. 2006. The fabrication of hollow spherical copper sulfide nanoparticle assemblies with 2-hydroxypropyl-β-cyclodextrin as a template under sonication. Ultrasonics Sonochemistry 13(5): 451-454.

Yeshchenko, O.A., Dmitruk, I.M., Dmytruk, A.M. & Alexeenko, A.A. 2007. Influence of annealing conditions on size and optical properties of copper nanoparticles embedded in silica matrix. Materials Science and Engineering: B 137(1- 3): 247-254.

Zainol, I., Akil, H.M. & Mastor, A. 2009. Effect of γ-irradiation on the physical and mechanical properties of chitosan powder. Materials Science and Engineering: C 29(1): 292-297.

Zhou, F., Zhou, R., Hao, X., Wu, X., Rao, W., Chen, Y. & Gao, D. 2008. Influences of surfactant (PVA) concentration and pH on the preparation of copper nanoparticles by electron beam irradiation. Radiation Physics and Chemistry 77(2): 169-173.

 

 

*Pengarang untuk surat-menyurat; email: shahrul_izwan85@yahoo.com

 

 

 

sebelumnya