Sains Malaysiana 43(9)(2014): 1421–1428

 

Microwave-Induced Zinc Chloride Activated Palm Kernel Shell for Dye Removal

(Isirong Sawit Teraktif Zink Klorida dengan Gelombang Mikro Sebagai Penyingkir Warna)

 

 

MUHAMMAD ABBAS AHMAD ZAINI*, TAN WEE MENG, MOHD. JOHARI KAMARUDDIN,

SITI HAMIDAH MOHD SETAPAR & MOHD. AZIZI CHE YUNUS

 

Centre of Lipids Engineering and Applied Research (CLEAR), Faculty of Chemical Engineering

Universiti Teknologi Malaysia, 81310 UTM, Johor Bahru, Johor, Malaysia

 

Diserahkan: 11 Februari 2013/Diterima: 4 Februari 2014

 

ABSTRACT

This work is aimed to determine the characteristics of activated carbons derived from palm kernel shell (PKS) by microwave-induced zinc chloride activation for dye removal. Activation was performed in a microwave oven at power intensity of 70% for 10 min. The same procedures were repeated for activation using recycled ZnCl2 solution from the first activation. The activated carbons were characterized according to surface area, morphology, functional groups and batch adsorption. The yield for the first activation was 70.7% with surface area of 858m2/g. It was found that the activated carbon prepared using the recycled ZnCl2 still possesses good surface area for methylene blue removal. The adsorption behaviour of the continuous system was well fitted to and could be satisfactorily described by the Yoon and Nelson model.

 

Keywords: Adsorption; methylene blue; microwave heating; palm kernel shell; zinc chloride activation

 

ABSTRAK

Kajian ini bertujuan untuk menentukan ciri karbon teraktif daripada isirong sawit (PKS) dengan pengaktifan zink klorida (ZnCl2) berbantukan gelombang mikro sebagai penjerap warna. Pengaktifan dilakukan dalam ketuhar gelombang mikro pada keamatan kuasa 70% selama 10 min. Prosedur yang sama diulang bagi pengaktifan menggunakan ZnCl2 yang dikitar semula daripada pengaktifan pertama. Karbon teraktif dicirikan mengikut luas permukaan, morfologi, kumpulan berfungsi dan penjerapan berkelompok. Hasil untuk pengaktifan pertama ialah 70.7% dengan luas permukaan 858 m2/g. Juga didapati bahawa karbon teraktif yang disediakan dengan ZnCl2 yang dikitar semula masih mempunyai luas permukaan yang baik untuk penyingkiran metilena biru. Sifat penjerapan sistem berterusan adalah menepati dan boleh digambarkan dengan model Yoon dan Nelson.

 

Kata kunci: Isirong sawit; metilena biru; pemanasan gelombang mikro; pengaktifan zink klorida; penjerapan

RUJUKAN

Aksu, Z. & Gonen, F. 2004. Biosorption of phenol by immobilized activated sludge in a continuous packed bed: Prediction of breakthrough curves. Process Biochemistry 39: 599-613.

Allwar, Md Noor, A. & Mohd Nawi, M.A. 2008. Textural characteristics of activated carbons prepared from oil palm shells activated with ZnCl2 and pyrolysis under nitrogen and carbon dioxide. Journal of Physical Science 19: 93-104.

Anjaneyulu, Y., Chary, N.S. & Raj, D.S.S. 2005. Decolorisation of industrial effluents- available methods and emerging technologies- a review. Reviews Environmental Science Biotechnology 4: 245-273.

Bohart, G.S. & Adams, E.Q. 1920. Some aspects of the behavior of charcoal with respect to chlorine. Journal of the American Chemical Society 42: 523-544.

Chen, H. & Hashisho, Z. 2012. Fast preparation of activated carbon from oil sands coke using microwave-assisted activation. Fuel 95: 178-182.

Deng, H., Yang, L., Tao, G. & Dai, J. 2009. Preparation and characterization of activated carbon from cotton stalk by microwave assisted chemical activation: application in methylene blue adsorption from aqueous solution. Journal of Hazardous Materials 166: 1514-1521.

Environmental Protection Agency 1997. Profile of the textile industry, U.S. EPA, Washington.

Foo, K.Y. & Hameed, B.H. 2011. Microwave-assisted preparation of oil palm fiber activated carbon for methylene blue adsorption. Chemical Engineering Journal 166: 792-795.

Foo, K.Y. & Hameed, B.H. 2012. Porous structure and adsorptive properties of pineapple peel based activated carbons prepared via microwave assisted KOH and K2CO3 activation. Microporous Mesoporous Materials 148: 191-195.

Forgacs, E., Cserhati, T. & Oros, G. 2004. Removal of synthetic dyes from wastewaters: A review. Environmental International 30: 953-971.

Guo, J. & Lua, A.C. 2003. Surface functional groups on oil-palm-shell adsorbents prepared by H3PO4 and KOH activation and their effects on adsorptive capacity. Trans IChemE Part A 81: 585-590.

Helfferich, F.G. & Carr, P.W. 1993. Non-linear waves in chromatography- waves, shocks and shapes. Journal of Chromatography 629: 97-122.

Husain, Z., Zainal, Z.A. & Abdullah, M.Z. 2003. Analysis of biomass-residue-based cogeneration system in palm oil mills. Biomass and Bioenergy 24: 117-124.

Issabayeva, G., Aroua, M.K. & Nik Sulaiman, N.M. 2006. Removal of lead from aqueous solutions on palm shell activated carbon. Bioresource Technology 97: 2350-2355.

Kumar, B.G.P., Miranda, L.R. & Velan, M. 2005. Adsorption of bismark brown dye on activated carbons prepared from rubberwood sawdust (Hevea brasiliensis) using different activation methods. Journal of Hazardous Materials B 126: 63-70.

Menendez, J.A., Arenillas, A., Fidalgo, B., Fernandez, Y., Zubizarreta, L., Calvo, E.G. & Bermudez, J.M. 2010. Microwave heating processes involving carbon materials. Fuel Processing Technology 91: 1-8.

Metaxas, A.C. & Meredith, R.J. 1983. Industrial Microwave Heating. London: Peter Peregrinus Ltd.

Mullin, J. 1997. Microwave Processing: New Methods of Food Preservation. London: Blackie Academic & Professional.

Nwabanne, J.T. & Igbokwe, P.K. 2012. Adsorption performance of packed bed column for the removal of lead (II) using oil palm fibre. International Journal of Applied Science and Technology 2: 106-115.

Okoroigwe, E.C. & Saffron, C.M. 2012. Determination of bio-energy potential of palm kernel shell by physicochemical characterization. Nigerian Journal of Technology 31: 329- 335.

Robinson, T., McMullan, G., Marchant, R. & Nigam, P. 2001. Remediation of dyes in textile effluent: A critical review on current treatment technologies with a proposed alternative. Bioresource Technology 77: 247-255.

Singh, S., Srivastava, V.C. & Mall, I.D. 2009. Fixed-bed study for adsorptive removal of furfural by activated carbon. Colloids and Surfaces A: Physicochemical and Engineering Aspects 332: 50-56.

Tan, I.A.W., Ahmad, A.L. & Hameed, B.H. 2008. Adsorption of basic dye using activated carbon prepared from oil palm shell: batch and fixed bed studies. Desalination 225: 13-28.

Wang, T., Tan, S. & Liang, C. 2009. Preparation and characterization of activated carbon from wood via microwave-induced zinc chloride activation. Carbon 47: 1867-1885.

Wang, X.J., Liang, X., Wang, Y., Wang, X., Liu, M., Yin, D., Xia, S., Zhao, J. & Zhang, Y. 2011. Adsorption of copper (II) onto activated carbons from sewage sludge by microwave-induced phosphoric acid and zinc chloride activation. Desalination 278: 231-237.

Yahaya, N.K.E.M., Abustan, I., Latiff, M.F.P.M., Bello, O.S. & Ahmad, M.A. 2011. Fixed-bed column study for Cu (II) removal from aqueous solutions using rice husk based activated carbon. International Journal of Engineering and Technology 11: 248-252.

Yoon, Y.H. & Nelson, J.H. 1984. Application of gas adsorption kinetics: A theoretical model for respiratory cartridge service life. American Industrial Hygiene Association Journal 45: 509-516.

Yuen, F.K. & Hameed, B.H. 2009. Recent developments in the preparation and regeneration of activated carbons by microwaves. Advances in Colloid and Interface Sciences 149: 19-27.

Zaini, M.A.A., Okayama, R. & Machida, M. 2009. Adsorption of aqueous metal ions on cattle-manure-compost based activated carbons. Journal of Hazardous Materials 170: 1119-1124.

 

 

*Pengarang untuk surat-menyurat; email: abbas@cheme.utm.my

 

 

 

sebelumnya