Sains Malaysiana 44(11)(2015): 1541–1550

 

Study on the Preparation of Cellulose Nanofibre (CNF) from Kenaf Bast Fibre for Enzyme Immobilization Application

(Kajian terhadap Penyediaan Nano-serabut Selulosa (CNF) daripada Serabut Kulit Kenaf untuk Aplikasi Pemegunan Enzim)

 

 

SAFWAN SULAIMAN1, MOHD NORIZNAN MOKHTAR1*, MOHD NAZLI NAIM1, AZHARI SAMSU BAHARUDDIN1, MOHAMAD AMRAN MOHD SALLEH2 & ALAWI SULAIMAN3

 

1Department of Process and Food Engineering, Faculty of Engineering, Universiti Putra Malaysia

43400 Serdang, Selangor Darul Ehsan, Malaysia

 

2Department of Chemical and Environmental Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400 Serdang, Selangor Darul Ehsan, Malaysia

 

3Faculty of Plantation and Agrotechnology, Universiti Teknologi MARA, 40450 Shah Alam, Selangor Darul Ehsan, Malaysia

 

Diserahkan: 28 Mac 2015/Diterima: 12 Jun 2015

 

ABSTRACT

This paper discussed on the preparation of natural CNF from kenaf bast fibre for the application as a support structure in enzyme immobilization. The treatments involved for this preparation were delignification, bleaching and high-intensity ultra-sonication process to obtain nanofibre with high cellulose content and less than 100 nm diameter. Chemical composition analysis showed the influence of each process treatment on cellulose content of raw bast fibre, bleached pulp fibre and CNF(63.67, 81.12 and 91.97%, respectively). By increasing the cellulose content and decreasing the size of cellulose fibre, it resulted in a greater number of –OH functional group on its surface that plays as important role in enzyme immobilization. FTIR spectroscopy confirms that the removal of lignin and hemicellulose from the fibre after the treatments, as well as its interaction with coupling agents and CGTase enzyme. About 62.10% of enzyme loading and 45.62% of its activity yield were obtained after immobilization. Enzymatic reaction of immobilized CGTase on CNF indicates about more than 60% relative production yield of α-CD was achieved and its reusability was able to retain about 67.0% from its initial activity after 8 cycles of reaction. Therefore, the CNF is a good potential as a support for enzyme immobilization.

 

Keywords: Cellulose nanofibre (CNF); covalent immobilization; cyclodextrin glucanotransferase (CGTase); kenaf

 

ABSTRAK

 

Kertas ini membincangkan penyediaan CNF semula jadi daripada serabut kulit kenaf untuk aplikasi sebagai struktur sokongan dalam pemegunan enzim. Rawatan yang terlibat dalam penyediaan ini ialah delignasi, pelunturan dan proses ultrasonikasi berkeamatan tinggi untuk memperoleh nano-serabut dengan kandungan selulosa yang tinggi dan berdiameter kurang daripada 100 nm. Analisis komposisi kimia menunjukkan kesan akibat daripada proses rawatan terhadap kandungan selulosa pada serabut kulit mentah, serabut pulpa terluntur dan CNF (masing-masing adalah 63.67, 81.12 dan 91.97%). Dengan peningkatan kandungan selulosa dan pengurangan saiz serabut selulosa, ia menghasilkan lebih banyak kumpulan berfungsi –OH pada permukaannya yang memainkan peranan penting dalam pemegunan enzim. FTIR spektroskopi mengesahkan penyingkiran lignin dan hemiselulosa daripada serabut selepas proses rawatan tersebut serta interaksinya dengan agen perhubungan dan enzim CGTase. Sebanyak 62.10% muatan enzim dan 45.62% hasilan aktiviti diperoleh selepas pemegunan. Tindak balas enzim CGTase terpegun pada CNF menunjukkan lebih daripada 60% hasil pengeluaran relatif α-CD dicapai dan penggunaan semulanya dapat mengekalkan sebanyak 67.0% daripada aktiviti awal selepas 8 kitaran tindak balas. Oleh itu, CNF berpotensi baik sebagai penyokong untuk pemegunan enzim.

 

Kata kunci: Kenaf; nano-serabut selulosa (CNF); pemegunan kovalen; siklodekrin glukanotransferase (CGTase)

RUJUKAN

Abdel-Naby, M.A. 1999. Immobilization of Paenibacillus macerans NRRL B-3186 cyclodextrin glucosyltransferase and properties of the immobilized enzyme. Process Biochem. 34(4): 399-405.

Abdel-Naby, M.A., Ismail, A.M.S., Abdel-Fattah, A.M. & Abdel-Fattah, A.F. 1999. Preparation and some properties of immobilized Penicillium funiculosum 258 dextranase. Process Biochem. 34(4): 391-398.

Abe, K. & Yano, H. 2009. Comparison of the characteristics of cellulose microfibril aggregates of wood, rice straw and potato tuber. Cellulose 16(6): 1017-1023.

Brinchi, L., Cotana, F., Fortunati, E. & Kenny, J.M. 2013. Production of nanocrystalline cellulose from lignocellulosic biomass: Technology and applications. Carbohydr. Polym. 94(1): 154-169.

Cao, L. 2006. Covalent enzyme immobilization. Carrier-bound Immobilized Enzymes. KGaA: Wiley-VCH Verlag GmbH & Co. pp. 169-316.

Chen, W., Yu, H. & Liu, Y. 2011a. Preparation of millimeter-long cellulose I nanofibers with diameters of 30-80nm from bamboo fibers. Carbohyd. Polym. 86(2): 453-461.

Chen, W., Yu, H., Liu, Y., Chen, P., Zhang, M. & Hai, Y. 2011b. Individualization of cellulose nanofibers from wood using high-intensity ultrasonication combined with chemical pretreatments. Carbohyd. Polym. 83(4): 1804-1811.

Ferrarotti, S.A., Bolivar, J.M., Mateo, C., Wilson, L., Guisan, J.M. & Fernandez-Lafuente, R. 2006. Immobilization and stabilization of a cyclodextrin glycosyltransferase by covalent attachment on highly activated Glyoxyl-Agarose supports. Biotechnol. Progr. 22(4): 1140-1145.

Ivanova, V. 2010. Immobilization of cyclodextrin glucanotransferase from Paenibacillus macerans ATCC 8244 on magnetic carriers and production of cyclodextrins. Biotechnol. Biotec. Eq. 24(supp 1): 516-528.

Joonobi, M., Harun, J., Tahir, P.M., Zaini, L.H., Saiful Azry, S. & Makinejad, M.D. 2010. Characteristics of nanofibres extracted from kenaf core. BioResources 5(4): 2556-2566.

Jonoobi, M., Niska, K.O., Harun, J., Misra, M., Shakeri, A., Misra, M. & Oksman, K. 2009. Chemical composition, crystallinity, and thermal degradation of bleached and unbleached kenaf bast (Hibiscus cannabinus) pulp and nanofibers. BioResources 4(2): 626-639.

Karimi, S., Tahir, P.M., Karimi, A., Dufresne, A. & Abdulkhani, A. 2014. Kenaf bast cellulosic fibers hierarchy: A comprehensive approach from micro to nano. Carbohyd. Polym. 101(0): 878-885.

Khalil, H.P.S.A., Ismail, H., Rozman, H.D. & Ahmad, M.N. 2001. The effect of acetylation on interfacial shear strength between plant fibres and various matrices. Eur. Polym. J. 37(5): 1037-1045.

Kim, J., Grate, J.W. & Wang, P. 2006. Nanostructures for enzyme stabilization. Chem. Eng. Sci. 61(3): 1017-1026.

Le Troedec, M., Sedan, D., Peyratout, C., Bonnet, J.P., Smith, A., Guinebretiere, R., Gloaguen, V. & Krausz, P. 2008. Influence of various chemical treatments on the composition and structure of hemp fibres. Compos. Part A-Appl. S. 39(3): 514-522.

Li, Y., Mai, Y-W. & Ye, L. 2000. Sisal fibre and its composites: A review of recent developments. Compos. Sci. Technol. 60(11): 2037-2055.

Martı́n, M.T., Plou, F.J., Alcalde, M. & Ballesteros, A. 2003. Immobilization on Eupergit C of cyclodextrin glucosyltransferase (CGTase) and properties of the immobilized biocatalyst. J. Mol. Catal. B: Enzym. 21(4-6): 299-308.

Matte, C.R., Nunes, M.R., Benvenutti, E.V., Schöffer, J.D.N., Ayub, M.A.Z. & Hertz, P.F. 2012. Characterization of cyclodextrin glycosyltransferase immobilized on silica microspheres via aminopropyltrimethoxysilane as a “spacer arm.” J. Mol. Catal. B: Enzym. 78(0): 51-56.

Mubarak, N.M., Wong, J.R., Tan, K.W., Sahu, J.N., Abdullah, E.C., Jayakumar, N.S. & Ganesan, P. 2014. Immobilization of cellulase enzyme on functionalized multiwall carbon nanotubes. J. Mol. Catal. B: Enzym. 107: 124-131.

Nacos, M.K., Katapodis, P., Pappas, C., Daferera, D., Tarantilis, P.A., Christakopoulos, P. & Polissiou, M. 2006. Kenaf xylan - A source of biologically active acidic oligosaccharides. Carbohyd. Polym. 66(1): 126-134.

Ortega, N., Perez-Mateos, M., Pilar, M.C. & Busto, M.D. 2009. Neutrase immobilization on alginate-glutaraldehyde beads by covalent attachment. J. Agric. Food. Chem. 57(1): 109-115.

Prousoontorn, M.H. & Pantatan, S. 2007. Production of 2-O-α-glucopyranosyl l-ascorbic acid from ascorbic acid and β-cyclodextrin using immobilized cyclodextrin glycosyltransferase. J. Inclusion Phenom. Macrocyclic Chem. 57(1-4): 39-46.

Redeker, E.S., Ta, D.T., Cortens, D., Billen, B., Guedens, W. & Adriaensens, P. 2013. Protein engineering for directed immobilization. Bioconjugate Chem. 24(11): 1761-1777.

Schöffer, J.D.N., Klein, M.P., Rodrigues, R.C. & Hertz, P.F. 2013. Continuous production of β-cyclodextrin from starch by highly stable cyclodextrin glycosyltransferase immobilized on chitosan. Carbohydr. Polym. 98(2): 1311-1316.

Shahrazi, S., Saallah, S., Mokhtar, M.N., Baharuddin, A.S. & Yunos, K.F.M. 2013. Dynamic mathematical modelling of reaction kinetics for cyclodextrins production from different starch sources using Bacillus macerans cyclodextrin glucanotransferase. Am. J. Biochem. Biotechnol. 9(2): 195- 205.

Silva, M.C., Lopes, O.R., Colodette, J.L., Porto, A.O., Rieumont, J., Chaussy, D., Belgacem, M.N. & Silva, G.G. 2008. Characterization of three non-product materials from a bleached eucalyptus kraft pulp mill, in view of valorising them as a source of cellulose fibres. Ind. Crop Prod. 27(3): 288-295.

Siró, I. & Plackett, D. 2010. Microfibrillated cellulose and new nanocomposite materials: A review. Cellulose 17(3): 459-494.

Sulaiman, S., Mokhtar, M.N., Naim, M.N., Baharuddin, A.S. & Sulaiman, A. 2014. A review: Potential usage of cellulose nanofibers (CNF) for enzyme immobilization via covalent interactions. Appl. Biochem. Biotechnol. 175(4): 1817-1842.

Svensson, D. & Adlercreutz, P. 2011. Immobilisation of CGTase for continuous production of long-carbohydrate-chain alkyl glycosides: Control of product distribution by flow rate adjustment. J. Mol. Catal. B: Enzym. 69(3-4): 147-153.

van Soest, P.J., Robertson, J.B. & Lewis, B.A. 1991. Methods for dietary fiber, neutral detergent fiber and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 74(10): 3583-3597.

Wang, H-Y., Chen, Y-Y. & Zhang, Y-Q. 2015. Processing and characterization of powdered silk micro- and nanofibers by ultrasonication. Mater. Sci. Eng. C 48: 444-452.

Zhao, H-P., Feng, X-Q. & Gao, H. 2007. Ultrasonic technique for extracting nanofibers from nature materials. Appl. Phys. Lett. 90: 073112.

 

 

*Pengarang untuk surat-menyurat; email: noriznan@upm.edu.my