Sains Malaysiana 44(4)(2015): 503–509

 

Evaluation of the Phytoremediation Potential of Two Medicinal Plants

(Penilaian Potensi Fitoremediasi bagi Dua Tumbuhan Ubatan)

 

 

FAZILAH ABD MANAN1*,TSUN-THAI CHAI2, AZMAN ABD SAMAD3 & DAYANGKU DALILAH MAMAT3

 

1Department of Biosciences and Health Sciences, Faculty of Biosciences and Medical Engineering

Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor Darul Takzim, Malaysia

 

2Department of Chemical Science, Faculty of Science, Universiti Tunku Abdul Rahman

31900 Kampar, Perak Darul Ridzuan, Malaysia

 

3Department of Biotechnology and Medical Engineering, Faculty of Biosciences and Medical Engineering, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor Darul Takzim

Malaysia

 

4Faculty of Biosciences and Medical Engineering, Universiti Teknologi Malaysia

81310 Johor Bahru, Johor Darul Takzim, Malaysia

 

Diserahkan: 25 Jun 2014/Diterima: 7 November 2014

 

ABSTRACT

Heavy metal pollution leads to human health problems and represents a constant threat to the environment. Pollutant clean-up using conventional methods are often hampered by high cost and ineffective pollutant removal. Phytoremediation technique is a preferable alternative due to its minimal side effects to the environment in addition to reasonable treatment cost. In this study, we investigated the potential of Centella asiatica and Orthosiphon stamineus as phytoremediation agents. Both species were grown in contaminated soil obtained from industrial land. Plant growth response and their ability to accumulate and translocate zinc, copper and lead were assessed. From this study, root growth of C. asiatica was compromised when grown in contaminated soil. Copper was highly accumulated in C. asiatica roots while the leaves were more concentrated with zinc and lead. Conversely, all three tested metals were highly detected in the roots of O. stamineus, although the root elongation was not adversely affected. Low amount of metals in the stems of both species permits longer stem length. Correlation study showed that the accumulation of zinc, copper and lead in plant tissues varies depending on plant species and the type of metals. Based on the bioaccumulation, translocation and enrichment factor, our study showed that C. asiatica was tolerant towards zinc, copper and lead; hence suitable for phytoextraction. By contrast, O. stamineus acted as a moderate accumulator of the tested metal elements.

 

Keywords: Centella asiatica; heavy metals; Orthosiphon stamineus; phytoremediation

 

ABSTRAK

Pencemaran logam berat membawa kepada masalah kesihatan manusia dan menjadi ancaman berterusan kepada alam sekitar. Pembersihan menggunakan kaedah konvensional sering terjejas oleh kos yang tinggi sedangkan penyingkiran pencemar tidak efektif. Sebagai alternatif, teknik fitoremediasi menjadi pilihan utama disebabkan oleh kesan sampingan minimum terhadap alam sekitar dengan kos rawatan yang munasabah. Dalam kajian ini, kami mengkaji potensi Centella asiatica dan Orthosiphon stamineus sebagai agen fitoremediasi. Kedua-dua spesies ditumbuhkan menggunakan tanah tercemar dari kawasan perindustrian. Tindak balas pertumbuhan, kebolehan mengumpul dan mentranslokasi zink, kuprum dan plumbum dinilai. Daripada kajian ini, pertumbuhan akar C. asiatica dikompromi apabila tumbuh pada tanah tercemar. Kuprum terkumpul pada akar C. asiatica manakala daunnya mengandungi lebih banyak zink dan plumbum. Sebaliknya, semua logam yang dikaji dikesan dengan sangat tinggi di dalam akar O. stamineus, walaupun pertumbuhan akar tidak terjejas. Jumlah logam yang rendah pada batang kedua-dua spesies membolehkan ia tumbuh lebih panjang. Analisis korelasi menunjukkan pengumpulan zink, kuprum dan plumbum dalam tisu tumbuhan adalah berbeza mengikut spesies dan jenis logam. Berdasarkan faktor bio-akumulasi, faktor translokasi dan faktor pengkayaan, kajian kami menunjukkan bahawa C. asiatica adalah toleran terhadap zink, kuprum dan plumbum, maka ia sesuai untuk fito-ekastraksi. Walau bagaimanapun, O. stamineus bertindak sebagai pengumpul sederhana bagi logam yang dikaji.

 

Kata kunci: Centella asiatica; fitoremediasi; logam berat; Orthosiphon stamineus

RUJUKAN

 

Abdu, A., Aderis, N., Abdul-Hamid, H., Majid, N.M., Jusop, S., Karam, D.S. & Ahmad, K. 2011. Using Orthosiphon stamineus B. for phytoremediation of heavy metals in soils amended with sewage sludge. American Journal of Applied Sciences 8(4): 323-331.

Ahamed, B.M. & Abdul, M.A. 2010. Medicinal potentials of Orthosiphon stamineus benth. WebmedCentral CANCER 1(12): 1-7.

Ali, H., Khan, E. & Sajad, M.A. 2013. Phytoremediation of heavy metals-concepts and applications. Chemosphere 91(7): 869-881.

Ameer, O.Z., Salmani, M., Asmawi, M.Z., Ibraheem, Z.O. & Yam, M.F. 2012. Orthosiphon stamineus: Traditional uses, phytochemistry, pharmacology, and toxicology. Journal of Medicinal Food 15(8): 678-690.

Antosiewicz, D.M. 1992. Adaptation of plants to an environment polluted with heavy metals. Acta Societatis Botanicorum Poloniae 61(2): 281-299.

Baker, A.J.M. & Walker, P.L. 1990. Ecophysiology of metal uptake by tolerant plants. In Heavy Metal Tolerance in Plants: Evolutionary Aspects, edited by Shaw, A.J. Boca Raton: CRC Press. pp. 155-177.

Clemens, S., Palmgren, M.G. & Krämer, U. 2002. A long way ahead: Understanding and engineering plant metal accumulation. Trends in Plant Science 7(7): 309-315.

Fernandes, J. & Henriques, F. 1991. Biochemical, physiological, and structural effects of excess copper in plants. The Botanical Review 57(3): 246-273.

Ghosh, M. & Singh, S. 2005. A review on phytoremediation of heavy metals and utilization of it’s by products. Applied Ecology and Environmental Research 3(1): 1-18.

Gohil, K., Patel, J. & Gajjar, A. 2010. Pharmacological review on Centella asiatica: A potential herbal cure-all. Indian Journal of Pharmaceutical Sciences 72(5): 546-556.

Gwóźdź, E.A., Przymusiński, R., Rucińska, R. & Deckert, J. 1997. Plant cell responses to heavy metals: Molecular and physiological aspects. Acta Physiologiae Plantarum 19(4): 459-465.

Hamid, A.A., Shah, Z.M., Muse, R. & Mohamed, S. 2002. Characterisation of antioxidative activities of various extracts of Centella asiatica (L) Urban. Food Chemistry 77(4): 465-469.

Keunen, E., Remans, T., Bohler, S., Vangronsveld, J. & Cuypers, A. 2011. Metal-induced oxidative stress and plant mitochondria. International Journal of Molecular Sciences 12(10): 6894-6918.

Lorestani, B., Cheraghi, M. & Yousefi, N. 2011. Phytoremediation potential of native plants growing on a heavy metals contaminated soil of copper mine in Iran. World Acad. Sci. Eng. Techno. 77: 377-382.

Malaysia Food Act 1983 and Food Regulations 1985: Details on Food Regulations amendments from 1987 to January, 1994 : All amendments up to January, 1994. 1994. Kuala Lumpur: MDC Sdn. Bhd.

Malik, N., Chamon, A., Mondol, M., Elahi, S. & Faiz, S. 2011. Effects of different levels of zinc on growth and yield of red amaranth (Amaranthus sp.) and rice (Oryza sativa, Variety-BR49). Journal of the Bangladesh Association of Young Researchers 1(1): 79-91.

Mohd, S.N., Majid, N.M., Shazili, N.A.M. & Abdu, A. 2013. Assessment of Melaleuca cajuputi as heavy metals phytoremediator for sewage sludge contaminated soil. American Journal of Applied Sciences 10(9): 1087-1092.

Mohd Salim, R.J., Adenan, M.I., Amid, A., Jauri, M.H. & Sued, A.S. 2013. Statistical analysis of metal chelating activity of Centella asiatica and Erythroxylum cuneatum using response surface methodology. Biotechnology Research International 2013: Article ID 137851.

Mokhtar, H., Morad, N. & Fizri, F.F.A. 2011. Phytoaccumulation of copper from aqueous solutions using Eichhornia crassipes and Centella asiatica. Int. J. Environ. Sci. Dev. 2(3): 205-210.

Nagajyoti, P., Lee, K. & Sreekanth, T. 2010. Heavy metals, occurrence and toxicity for plants: A review. Environmental Chemistry Letters 8(3): 199-216.

NYS DEC. 2006. New York State Brownfield cleanup program development of soil cleanup objectives technical support document. New York State Department of Environmental Conservation and New York State Department of Health, Albany, NY. http://www.dec.ny.gov/chemical/34189.html. Accessed on 25 January 2014.

Punz, W.F. & Sieghardt, H. 1993. The response of roots of herbaceous plant species to heavy metals. Environmental and Experimental Botany 33(1): 85-98.

Rosalizan, M., Rohani, M., Khatijah, I. & Shukri, M. 2008. Physical characteristics, nutrient contents and triterpene compounds of ratoon crops of Centella asiatica at three different stages of maturity. Journal of Tropical Agriculture and Food Science 36(1): 43-51.

Sengar, R.S., Gautam, M., Sengar, R.S., Garg, S.K., Sengar, K. & Chaudhary, R. 2008. Lead stress effects on physiobiochemical activities of higher plants. Reviews of Environmental Contamination and Toxicology 196: 73-93.

Sharma, P. & Dubey, R.S. 2005. Lead toxicity in plants. Brazilian Journal of Plant Physiology 17(1): 35-52.

Singh, R., Gautam, N., Mishra, A. & Gupta, R. 2011. Heavy metals and living systems: An overview. Indian Journal of Pharmacology 43(3): 246-253.

Tripathi, P., Dwivedi, S., Mishra, A., Kumar, A., Dave, R., Srivastava, S., Shukla, M.K., Srivastava, P.K., Chakrabarty, D. & Trivedi, P.K. 2012. Arsenic accumulation in native plants of West Bengal, India: Prospects for phytoremediation but concerns with the use of medicinal plants. Environmental Monitoring and Assessment 184(5): 2617-2631.

US EPA. 2002. Supplemental guidance for developing soil screening levels for superfund sites. Washington, D.C.: Office of Solid Waste and Emergency Response. http://www.epa. gov/superfund/health/conmedia/soil/index.htm. Accessed on 25 January 2014.

Van Der Ent, A., Baker, A.J., Reeves, R.D., Pollard, A.J. & Schat, H. 2013. Hyperaccumulators of metal and metalloid trace elements: Facts and fiction. Plant and Soil 362(1-2): 319-334.

Van Ginneken, L., Meers, E., Guisson, R., Ruttens, A., Elst, K., Tack, F.M., Vangronsveld, J., Diels, L. & Dejonghe, W. 2007. Phytoremediation for heavy metal-contaminated soils combined with bioenergy production. Journal of Environmental Engineering and Landscape Management 15(4): 227-236.

Whiting, S.N., Leake, J.R., McGrath, S.P. & Baker, A.J. 2000. Positive responses to Zn and Cd by roots of the Zn and Cd hyperaccumulator Thlaspi caerulescens. New Phytologist 145(2): 199-210.

Yap, C.K., Ismail, A. & Tan, S.G. 2004. The impact of anthropogenic activities on heavy metal (Cd, Cu, Pb and Zn) pollution: Comparison of the metal levels in the green-lipped mussel Perna viridis (Linnaeus) and in the sediment from a high activity site at Kg. Pasir Puteh and relatively low activity site at Pasir Panjang. Pertanika Journal of Tropical Agricultural Science 27(1): 73-78.

Yoon, J., Cao, X., Zhou, Q. & Ma, L.Q. 2006. Accumulation of Pb, Cu, and Zn in native plants growing on a contaminated Florida site. Science of the Total Environment 368(2): 456- 464.

Zarinkamar, F., Saderi, Z. & Soleimanpour, S. 2013. Excluder strategies in response to Pb toxicity in Matricaria chamomilla. Advances in Bioresearch 4(3): 39-49.

 

 

*Pengarang untuk surat-menyurat; email: fazilah@fbb.utm.my

 

 

 

sebelumnya