Sains Malaysiana 44(4)(2015): 565–569


Comparison of the Performance of MR-deDuster with Other Conventional Cyclones

(Perbandingan Prestasi MR-deDuster dengan Siklon Konvensional Lain)





Air Resources Research Laboratory, Malaysia-Japan International Institute of Technology

54100 UTM Kuala Lumpur, Malaysia


Diserahkan: 20 Ogos 2014/Diterima: 7 November 2014




A new type of cyclone design configuration called MR-deDuster, which contains multi cyclone, has been developed. A theoretical study had been carried out to evaluate and predict the performance of a MR-deDuster. In this paper, a comparative study was done to investigate the performance of MR-deDuster with other conventional cyclones in terms of collection efficiency and pressure drop. The performance of MR-deDuster was measured by its collection efficiency based on the particle size distribution of activated carbon. It was found that MR-deDuster is able to collect as high as 94% of PM10 which is high comparing with many other conventional cyclones. In addition, the pressure drop of the unit is relatively low compared to the other cyclones which highlight the ability of the unit to capture the fine particle at low pressure drop.


Keywords: Air pollution; cyclone efficiency; dust emission; multi-cyclones; pressure drop



Sejenis konfigurasi reka bentuk siklon baru yang dikenali sebagai MR-deDuster yang mengandungi pelbagai siklon, telah dibangunkan. Suatu kajian teori telah dijalankan untuk menilai dan meramalkan prestasi MR-deDuster. Dalam kertas ini, suatu kajian perbandingan telah dijalankan untuk mengkaji prestasi MR-deDuster dengan siklon konvensional lain daripada segi kecekapan pungutan dan kejatuhan tekanan. Prestasi MR-deDuster diukur melalui kecekapan kutipan berdasarkan agihan saiz zarah karbon diaktifkan. Didapati bahawa MR-deDuster mampu untuk mengumpul setinggi 94% PM10 jika dibandingkan dengan siklon konvensional lain. Di samping itu, penurunan tekanan bagi unit ini adalah agak rendah berbanding siklon lain yang menyerlahkan keupayaan unit untuk menangkap zarah halus pada tekanan rendah.


Kata kunci: Kecekapan siklon; pancaran habuk; pelbagai siklon; pencemaran udara; penurunan tekanan


Avci, A. & Karagoz, I. 2003. Effects of flow and geometrical parameters on the collection efficiency in cyclone separators. J. Aerosol. Sci. 34: 937-955.

Azadi, M. 2012. An analytical study of the effect of inlet velocity on the cyclone performance using mathematical models. Powder Technology 217: 121-127.

Benitez, J. 1992. Process Engineering and Design for Air Pollution Control. New Jersey: Prentice Hall.

Bhatia, M.U. & Cheremisinoff, P.N. 1993. Pollution control and Design for Industry. New York: Marcel Dekker.

Bohnet, M., Gottschalk, O. & Morweiser, M. 1997. Modern design of aerocyclones. Adv. Powder Technol. 8(2): 137-161.

Coker, A.K. 1993. Understand cyclone design. Chem. Eng. Prog. 28: 51-55.

Farahani, N.S.M., Tahmasbi, V., Safikhani, H. & Abbasi, A. 2011. Effects of ribs on flow pattern and performance of cyclone separator. Engineering Application of Computional Fluid Dynamics 5(2): 180-187.

Hoffmann, A.C. & Stein, L.E. 2007. Gas Cyclones and Swirl Tubes Principles, Design and Operation. New York: Springer.

Lapple, C.E. 1951. Process use many collector types. Chemical Engineering 58(5): 175-183.

Leith, D. & Licht, W. 1996. The Collection Efficiency of Cyclone Type Particle Collectors: A New Theoretical Approach. AIChE Symp. Ser. Air Pollut. Control.

Licht, W. & Koch, W.H. 1977. New design approach boosts cyclone efficiency. Chem. Eng. Prog. 7: 80.

Lippmann, M. & Chan, T.L. 1974. Calibration of dual-inlet cyclones for ‘respirable’ mass sampling. American Industrial Hygiene Association Journal 35(4): 189-200.

Lorenz, T. 1994. Heissgasentstaubung mit zyklonen. Düsseldorf, Germany: VDI-Fortschrittsberichte.

Madhumita, B.R., Pouwel, E.L., Hoffman, A.C., Plomp, A. & Beumer, M.I.L. 1998. Improving the removal efificiency of industrial-scale cyclones for particles smaller than five micron. International Journal of Mineral Processing 53: 39-47.

Mothes, H. & Löffler, F. 1988. Prediction of particle removal in cyclone separators. Int. Chem. Eng. 28(2): 51-55.

Norelyza, H. & Rashid, M. 2013. Performance of MR-deDuster: A case study of a palm oil mill plant. Advance Materials Research 664: 133-137.

Norelyza, H., Rashid, M., Hajar, S. & Nurnadia, A. 2014. MR-deDuster: A dust emission separator in air pollution control. Jurnal Teknologi (Sciences & Engineering) 58: 85-88.

Rashid, M., Chong, W.C., Ramli, M., Zainura, Z.N. & Norruwaida, J. 2013. Evaluation of particulate emission from a palm oil mill boiler. Sains Malaysiana 42(9): 1289-1292.

Rongbiao, X., Park, S.H. & Lee, K.W. 2001. Effects of cone dimension on cyclone performance. Aerosol Science 32: 549-561.

Shepherd, C. & Lapple, C. 1939. Flow pattern and pressure drop. Ind. and Eng. Chem. 31: 972-984.

Stairmand, C.J. 1951. The design and performance of cyclone separators. Transactions of Industrial Chemical Engineers 29: 356-383.

Theodore, L. 2008. Air Pollution Control Equipment Calculation. New Jersey: John Wiley & Sons.

Theodore, L. & Buonicore, A.J. 1988. Air Pollution Control Equipment. Florida: CRC Press.

Wang, H.B., Bao, Y.L., Zhao, M.Q., Yang, L.D. & Yu, H.B. 1990. Analogy simulation of the properties of a circulating fluidized-bed boiler high-temperature cyclone separator. J. Engineering for Thermal Energy and Power 5: 14-20.

Wanga, W., Zhang, P., Wang, L., Chen, G., Li, J. & Li, X. 2010. Structure and performance of the circumfluent cyclone. Powder Technology 200: 158-163.

Youngmin, J., Tien, C. & Ray, M.B. 2000. Development of a post cyclone to improve the efficiency of reverse flow cyclones. Powder Technology 113: 97-108.



*Pengarang untuk surat-menyurat; email: