Sains Malaysiana 45(1)(2016): 9–18

Origin of Formation Water Salinity Variation and Its Geological Significance in Chang 9 Stratum, Jiyuan Oilfield

(Punca Pembentukan Variasi Kemasinan Air dan Kepentingan Geologi Chang 9 Stratum di Lapangan Minyak Jiyuan)

 

CHENG FENG1*, ZHIQIANG MAO1, HUA YANG2, JINHUA FU2, YUJIANG SHI2, YUMEI CHENG3, HAITAO ZHANG2, LINLIN NIU4 & MUHAMMAD AQEEL ASHRAF5,6

 

1Key Laboratory of Earth Prospection and Information Technology (Beijing)

College of Geophysics and Information Engineering, China University of Petroleum

102249 Beijing, China

 

2National Engineering Laboratory for Exploration and Development of Low-Permeability Oil and Gas Field & PetroChina Changqing Oilfield Company, 710018 Xi’ an, China

 

3Exploration Department, PetroChina Changqing Oilfield Company

710018 Xi’ an, China

 

4Changqing Division, PetroChina Logging Limited Company, 710201 Xi’ an

China

 

5Department of Geology, Faculty of Science, University of Malaya, 50603 Kuala Lumpur

Malaysia

 

6Water Research Unit, Faculty of Science and Natural Resources, University Malaysia Sabah,

88400 Kota Kinabalu, Sabah, Malaysia

 

 

Diserahkan: 13 Julai 2014/Diterima: 6 November 2014

 

ABSTRACT

The origin of formation water salinity variation in Chang 9 stratum, Jiyuan oilfield, Ordos basin is studied here. 91 formation water samples show that water salinity is characterized by a wide range and a complex plane distribution. In order to find out the main cause of such distribution complexity and reveal the relationship between formation water and evolution of reservoir traps, core data, chemical analysis result of formation water and log data are analyzed from perspectives of diagenesis and tectonism. And then, their characteristics are presented as the followings. In high salinity area, tuffaceous mudstone interlayer is found growing. Besides, the condition of Na++K+ is opposite to that of Ca2+, for its rate of concentration increase slows down with total salinity accumulating. In low salinity area, while, with fracture and faults developing, some formation water of CaCl2 type turns into MgCl2, NaHCO3 or Na2SO4 type. The cause is thus proposed to be composed of two aspects. One covers tuff alteration and later diagenesis for the high salinity. To be specific, montmorillonite, developed from tuff alteration, absorbs cation selectively and then ions migrate, during which more Na++K+ get lost, while more Ca2+ reserved. Afterwards, those reserved Ca2+ get released with montmorillonite transforming to illite, which results in a loss of Na++K+ and accumulation of Ca2+. Lots of ions are released into formation water during that process and later diagenetic process, which leads to the high water salinity. The other aspect is the development of faults and fractures, through which, the upper low salinity formation water gets connected. And that is the main cause of low salinity. At last, geological significance is discussed from two angles. Firstly, tuff alteration and later diagenesis are pivotal to reservoir reconstruction; and secondly, faults and fractures play an important role in oil transportation and storage.

 

Keywords: Chang 9 stratum; fault and fracture; formation water salinity; geological significance; Jiyuan oilfield; origin; tuff alteration

 

 

ABSTRAK

Asal usul variasi kemasinan formasi air di Chang 9 Stratum, lapangan minyak Jiyuan di basin Ordos dikaji. 91 sampel formasi air menunjukkan bahawa kemasinan air dicirikan melalui julat yang besar dan satah yang kompleks. Untuk mengetahui punca utama yang menyebabkan taburan kekompleksan dan menunjukkan hubungan antara formasi air dan evolusi perangkap empangan, data teras, keputusan analisis kimia daripada formasi air dan data log dianalisis daripada perspektif diagnesis dan tektonisme. Seterusnya, ciri berikut diberikan: Dalam kawasan kemasinan tinggi, tuf antara lapisan batu lumpur dilihat berkembang. Di samping itu, keadaan Na++K+ adalah bertentangan dengan Ca2+ kerana tahap kenaikan kepekatan menurun dengan pengumpulan jumlah kemasinan. Di kawasan kemasinan yang rendah dengan retak dan sesar berkembang, sebahagian formasi air jenis CaCl2 bertukar menjadi jenis MgCl2, NaHCO3 atau Na2SO4. Punca utama yang dicadangkan mengambil kira dua aspek. Pertama ialah perubahan tuf dan diagnesis untuk kemasinan tinggi. Untuk lebih tepat lagi, montmorilonit yang dibangunkan daripada perubahan tuf memilih menyerap kation dan selepas itu migrasi ion yang menunjukkan kehilangan Na++K+ yang banyak manakala lebih banyak Ca2+ disimpan. Selepas itu, Ca2+ yang disimpan dibebaskan dengan montmorilonit berubah menjadi batuan ilit dan mengakibatkan kehilangan Na++K+ dan Ca2+ terkumpul. Proses ini telah menyebabkan banyak ion dibebaskan dalam formasi air dan kemudian sewaktu proses diagenetik yang membawa kepada tahap kemasinan air yang tinggi. Aspek yang kedua ialah perkembangan sesar dan retak yang menyebabkan bahagian atas formasi air kemasinan rendah berhubung. Ini adalah punca utama kemasinan yang rendah. Akhirnya, kepentingan geologi dibincangkan daripada dua sudut. Pertama, perubahan tuf dan kemudian diagenesis adalah penting untuk pembinaan semula takungan dan kedua sesar dan retak yang memainkan peranan penting dalam pengangkutan dan penyimpanan minyak.

 

Kata kunci: Chang 9 stratum; formasi kemasinan air; kepentingan geologi; lapangan minyak Jiyuan; perubahan tuf; punca; sesar dan retak

RUJUKAN

Ashraf, M.A., Ullah, S., Ahmad, I., Qureshi, A.K., Balkhair, K.S. & Rehman, M.A. 2013. Green biocides, a promising technology: Current and future applications. Journal of the Science of Food and Agriculture 94(3): 388-403.

Batool, S., Khalid, A., Chowdury, A.J.K., Sarfraz, M., Balkhair, K.S. & Ashraf, M.A. 2015. Impacts of azo dye on ammonium oxidation process and ammonia oxidizing soil bacteria. RSC Advances 5: 34812-34820.

Billings, G.K., Hitchon, B. & Shaw, D.R. 1969. Geochemistry and origin of formation waters in the Western Canada Sedimentary Basin, 2. alkali metals. Chemical Geology 4(1): 211-223.

Boschetti, T., Manzi, V. & Toscani, L. 2013. Messinian Ca-Cl brines from Mediterranean Basins: Tracing diagenetic effects by Ca/Mg versus Ca/Sr diagram. Aquatic Geochemistry 19(3): 195-208.

Chen, J., Liu, D., Peng, P., Yu, C., Zhang, B. & Xiao, Z. 2013. The sources and formation processes of brines from the Lunnan Ordovician paleokarst reservoir, Tarim Basin, northwest China. Geofluids 13(3): 381-394.

Cheng, L.B., Qu, C.X., Gou, Y.J., He, Y.A., Wang, J. & Wang, F. 2012. Fault characteristics of Chang 9 Reservoir and its impact on Reservoir in Jiyuan Oilfield. Lithologic Reservoirs 24(5): 50-53.

Clayton, R.N., Friedman, I., Graf, D.L., Mayeda, T.K., Meents, W.F. & Shimp, N.F. 1966. The origin of saline formation waters: 1. isotopic composition. Journal of Geophysical Research 71(16): 3869-3882.

Collins, A.G. 1975. Geochemistry of Oilfield Waters. Translated by Lin, W.Z. & Wang, B.C. Beijing: Petroleum Industry Press, (in Chinese).

Connolly, C.A., Walter, L.M., Baadsgaard, H. & Longstaffe, F.J. 1990. Origin and evolution of formation waters, Alberta Basin, Western Canada Sedimentary Basin. I. chemistry. Applied Geochemistry 5(4): 375-395.

Duan, Y., Yu, W.X., Liu, X.Y., Guo, Z.Q., Wu, B.X., Sun, T. & Wang, C.Y. 2009. Oil migration and accumulation rules of Chang-9 oil-bearing formation in the Ordos Basin. Acta Geologica Sinica 2009-06.

Gao, X.X. 1994. Oil Field Water in Oil-gas-bearing Basin, China. Beijing: Petroleum Industry Press.

Hitchon, B. & Friedman, I. 1969. Geochemistry and origin of formation waters in the Western Canada Sedimentary Basin-I. Stable isotopes of hydrogen and oxygen. Geochimica et Cosmochimica Acta 33(11): 1321-1349.

Hitchon, B., Billings, G.K. & Klovan, J.E. 1971. Geochemistry and origin of formation waters in the Western Canada Sedimentary Basin-III. Factors controlling chemical composition. Geochimica et Cosmochimica Acta 35(6): 567-598.

Ibrahim, A., Mukhlisin, M. & Jaafar, O. 2014. Rainfall infiltration through unsaturated layered soil column. Sains Malaysiana 43(10): 1477-1484.

Kharaka, Y.K., Law, L.M., Carothers, W.W. & Goerlitz, D.F. 1986. Role of organic species dissolved in formation waters from sedimentary basins in mineral diagenesis. In Roles of Organic Matter in Sediment Diagenesis, edited by Gautier, D.L. SEPM Society for Sedimentary Geology. SEPM Special Publication Vol 38. pp. 111-122.

Knauth, L.P. & Beeunas, M.A. 1986. Isotope geochemistry of fluid inclusions in Permian Halite with implications for the isotopic history of ocean water and the origin of saline formation waters. Geochimica et Cosmochimica Acta 50(3): 419-433.

Lai, T.M. & Mortland, M.M. 1961. Diffusion of ions in bentonite and vermiculite. Soil Science Society of America Journal 25(5): 353-357.

Li, J., Liang, X. & Mao, X.M. 2012. Hydro-geochemistry implications of evolution of pore water in low-penetrability aquifer and significance of paleoclimate. Earth Science- Journal of China University of Geoscience 37(3): 612-620.

Li, M., Jin, A.M., Lou, Z.H., Shang, C.J. & Guan, C. 2010. Hydrochemical properties of formation water and its relationship with oil and gas migration and accumulation in Zhenwu area of Southern Gaoyou Sag. Journal of China University of Petroleum 34(5): 50-56.

Li, X.Q., Hou, D.J. & Zhang, A.Y. 2001. Advancement of the geochemical study of oilfield water. Geological Science and Technology Information 20(2): 51-54.

Liu, X.Y., Deng, X.Q., Zhao, Y.D., Zhang, X.F. & Han, T.Y. 2011. Hydrocarbon migration law and model of Chang 9 reservoir in Jiyuan area, Ordos Basin. Lithologic Reservoirs 23(5): 9-15.

Liu, Y.Q., Zeng, J.H., Zhou, L. & Zhai, S.J. 2013. Geochemical characteristics and origin of Shahejie formation water in Huimin Sag. Geoscience 27(5): 1110-1119.

Lüders, V., Plessen, B., Romer, R.L., Weise, S.M., Banks, D.A., Hoth, P., Dulski, P. & Schettler, G. 2010. Chemistry and isotopic composition of Rotliegend and Upper Carboniferous formation waters from the North German Basin. Chemical Geology 276(3): 198-208.

Ma, H.Y., Zhou, L.F., Deng, X.Q., Li, J.H. & Yang, L.P. 2013. The chemical characteristics and geological significance of formation water of Chang 8 subsection in Jiyuan area of Ordos Basin. Journal of Northwest University (Natural Science Edition) 43(2): 253-257.

Meng, F.X., Xiang, F., Li, F.J., Wu, C.X. & Yang, D. 2012. Diagenesis and pore evolution of Chang 9 Reservoir in Jiyuan oilfield. Journal of Xi’an Shiyou University (Natural Science Edition) 27(4): 7-12.

National Development and Reform Commission, 2006. SYT 5523-2006 Practice for analysis of oilfield waters. China Standard Press.

Pinti, D.L., Béland-Otis, C., Tremblay, A., Castro, M.C., Hall, C.M., Marcil, J., Lavoie, J. & Lapointe, R. 2011. Fossil brines preserved in the St-Lawrence Lowlands, Québec, Canada as revealed by their chemistry and noble gas isotopes. Geochimica et Cosmochimica Acta 75(15): 4228-4243.

Qiu, X.W. 2008. Characteristics and forming environments of tuffs in Yanchang formation in Ordos Basin. Northwest University Master’s Dissertation (Unpublished).

Qureshi, T., Memon, N., Memon, S.Q. & Ashraf, M.A. 2015. Decontamination of ofloxacin: optimization of removal process onto sawdust using response surface methodology. Desalination and Water Treatment. DOI: 10.1080/19443994.2015.1006825.

Schlumberger, 1988. Common Rock Minerals Manual in Log Interpretation. Translated by Wu, Q.Y. & Zhang, A.J. Beijing: Petroleum Industry Press. (in Chinese).

Shen, Z.L., Wang, Y.X. & Guo, H.M. 2012. Opportunities and challenges of water-rock interaction studies. Earth Science- Journal of China University of Geosciences 37(2): 207-219.

Shi, Y.J., Xiao, L., Mao, Z.Q. & Guo, H.P. 2011. An identification method for diagenetic facies with well logs and its geological significance in low-permeability sandstones: A case study on Chang 8 reservoirs in the Jiyuan Region, Ordos Basin. Acta Petrolei Sinica 32(5): 821.

Sun, X.Y. 2001. Geochemical characteristics of formation water in sedimentary basin and its geological significance. Natural Gas Exploration and Development 24(4): 47-53.

Surhio, M.A., Talpur, F.N., Nizamani, S.M., Amin, F., Bong, C.W., Lee, C.W., Ashraf, M.A. & Shahid, M.R. 2014. Complete degradation of dimethyl phthalate by biochemical cooperation of the Bacillus thuringiensis strain isolated from cotton field soil. RSC Advances 4: 55960-55966.

Wang, Y.P., Lin, J.X. & Wang, C.X. 1998. Chemical evolution of groundwater in the tertiary sedimentary system of the Xuhu oil_gas bearing depression. Earth Science-Journal of China University of Geosciences 23(3): 294-298.

White, D.E. 1965. Saline waters of sedimentary rocks. Am. Assoc. Petr. Geol. Mem. 4: 342-366.

Xie, X.N., Jiang, T. & Wang, H. 2006.  Expulsion of overpressured fluid revealed by geochemistry of formation water in the dirpiric structures of Yinggehai basin. Acta Petrologica Sinica 22(8): 2243-2248.

Yang, X.P. & Qiu, Y.N. 2002. Formation process and distribution of Laumontite in Yanchang formation (upper triassic) of Ordos Basin. Acta Sedimentological Sinica 20(4): 628-632.

Zhang, H.D., Wang, S. & Guo, G.P. 2003. Tertiary deep water genesis in Huanghua rift basin. Earth Science-Journal of China University of Geoscience 28(4): 455-470.

Zulkifley, M.T.M., Ng, N.T., Abdullah, W.H., Raj, J.K., Ghani, A.A., Shuib, M.K. & Ashraf, M.A. 2014a. Geochemical characteristics of a tropical lowland peat dome in the Kota Samarahan-Asajaya area, West Sarawak, Malaysia, Environmental Earth Sciences 73(4): 1443-1458.

Zulkifley, M.T.M., Fatt, N.T., Raj, J.K., Hashim, R. & Ashraf, M.A. 2014b. The effects of lateral variation in vegetation and basin dome shape on a tropical lowland stabilization in the Kota Samarahan-Asajaya area, West Sarawak, Malaysia. Acta Geologica Sinica 88(3): 894-914.

Sun, X.Y. 2001. Geochemical characteristics of formation water in sedimentary basin and its geological significance. Natural Gas Exploration and Development 24(4): 47-53.

Surhio, M.A., Talpur, F.N., Nizamani, S.M., Amin, F., Bong, C.W., Lee, C.W., Ashraf, M.A. & Shahid, M.R. 2014. Complete degradation of dimethyl phthalate by biochemical cooperation of the Bacillus thuringiensis strain isolated from cotton field soil. RSC Advances 4: 55960-55966.

Wang, Y.P., Lin, J.X. & Wang, C.X. 1998. Chemical evolution of groundwater in the tertiary sedimentary system of the Xuhu oil_gas bearing depression. Earth Science-Journal of China University of Geosciences 23(3): 294-298.

White, D.E. 1965. Saline waters of sedimentary rocks. Am. Assoc. Petr. Geol. Mem. 4: 342-366.

Xie, X.N., Jiang, T. & Wang, H. 2006. Expulsion of overpressured fluid revealed by geochemistry of formation water in the dirpiric structures of Yinggehai basin. Acta Petrologica Sinica 22(8): 2243-2248.

Yang, X.P. & Qiu, Y.N. 2002. Formation process and distribution of Laumontite in Yanchang formation (upper triassic) of Ordos Basin. Acta Sedimentological Sinica 20(4): 628-632.

Zhang, H.D., Wang, S. & Guo, G.P. 2003. Tertiary deep water genesis in Huanghua rift basin. Earth Science-Journal of China University of Geoscience 28(4): 455-470.

Zulkifley, M.T.M., Ng, N.T., Abdullah, W.H., Raj, J.K., Ghani, A.A., Shuib, M.K. & Ashraf, M.A. 2014a. Geochemical characteristics of a tropical lowland peat dome in the Kota Samarahan-Asajaya area, West Sarawak, Malaysia, Environmental Earth Sciences 73(4): 1443-1458.

Zulkifley, M.T.M., Fatt, N.T., Raj, J.K., Hashim, R. & Ashraf, M.A. 2014b. The effects of lateral variation in vegetation and basin dome shape on a tropical lowland stabilization in the Kota Samarahan-Asajaya area, West Sarawak, Malaysia. Acta Geologica Sinica 88(3): 894-914.

 

 

*Pengarang untuk surat-menyurat; email: fcvip0808@126.com

 

 

 

 

sebelumnya