Sains Malaysiana 46(12)(2017): 2507–2514

http://dx.doi.org/10.17576/jsm-2017-4612-28

 

Enhanced Photodegradation of Phenol by ZnO Nanoparticles Synthesized through Sol-gel Method

(Peningkatan Fotopenguraian oleh Fenol dengan Sintesis ZnO Nano Zarah melalui Kaedah Sol-gel)

 

NIKATHIRAH YUSOFF1, LI-NGEE HO2*, SOON-AN ONG1, YEE-SHIAN WONG1, WANFADHILAH KHALIK1 & MUHAMMAD FAHMI RIDZWAN1

 

1Water Research Goup (WAREG), School of Environmental Engineering, Universiti Malaysia Perlis, 02600 Arau, Perlis Indera Kayangan, Malaysia

 

2School of Materials Engineering, Universiti Malaysia Perlis, 02600 Arau, Perlis Indera Kayangan, Malaysia

 

Diserahkan: 13 April 2015/Diterima: 1 Mei 2017

 

ABSTRACT

Zinc oxide (ZnO) utilization in advanced oxidation process (AOP) via solar-photocatalytic process was a promising method for alternative treating wastewater containing phenol. The ZnO photocatalyst semiconductor was synthesized by sol-gel method. The morphology of the ZnO nanostructures was observed by using scanning electron microscope (SEM) and the crystallite phase of the ZnO was confirmed by x-ray diffraction (XRD). The objective of this study was to synthesis ZnO nanoparticles through a sol-gel method for application as a photocatalyst in the photodegradation of phenol under solar light irradiation. The photodegradation rate of phenol increased with the increasing of ZnO loading from 0.2 until 1.0 g. Only 2 h were required for synthesized ZnO to fully degrade the phenol. The synthesized ZnO are capable to totally degrade high initial concentration up until 45 mg L-1 within 6 h of reaction time. The photodegradation of phenol by ZnO are most favoured under the acidic condition (pH3) where the 100% removal achieved after 2 h of reaction. The mineralization of phenol was monitored through chemical oxygen demand (COD) reduction and 92.6% or removal was achieved. This study distinctly utilized natural sunlight as the sole sources of irradiation which safe, inexpensive; to initiate the photocatalyst for degradation of phenol.

 

Keywords: Phenol; photocatalyst; photocatalytic; sol-gel; zinc oxide

 

ABSTRAK

Penggunaan zink oksida (ZnO) dalam proses pengudaraan lanjutan (PPL) melalui proses sinaran suria fotopemangkin merupakan kaedah alternatif untuk merawat air buangan yang mengandungi fenol. Pemangkin semikonduktor ZnO disintesis melalui kaedah sol-gel. Bentuk permukaan struktur nano ZnO dikenal pasti menggunakan analisis SEM dan fasa hablur ZnO disahkan melalui analisis XRD. Objektif kajian ini adalah untuk mensintesis ZnO berstruktur nano melalui kaedah sol-gel bertujuan untuk diaplikasikan sebagai pemangkin dalam proses fotopenguraian fenol di bawah sinaran suria. Kadar fotopenguraian fenol meningkat dengan peningkatan jumlah ZnO bermula daripada 0.2 hingga 1.0 g. Tempoh masa 2 jam diperlukan untuk ZnO sintesis mengurai fenol sepenuhnya. ZnO sintesis mampu untuk menguraikan kepekatan fenol yang tinggi sehingga 45 mg L-1 dalam tempoh 6 jam masa tindak balas. Fotopenguraian fenol oleh ZnO sangat sesuai dalam keadaan berasid (pH3), dengan 100% penguraian dicatatkan selepas dua jam masa tindak balas. Penguraian lengkap fenol dikawal menerusi pengurangan keperluan oksigen lengkap (COD) dan sebanyak 92.6% penguraian dicapai. Kajian ini jelas menggunakan sinaran matahari semula jadi sebagai sumber sinaran tunggal yang selamat, murah dan mampu mengaktifkan pemangkin untuk penguraian fenol.

 

Kata kunci: Fenol; fotopemangkin; fotopemangkinan; sol-gel; zink oksida

RUJUKAN

Agency for Toxic Substances and Disease Registry (ATSDR). 2008. Toxicology Profile for Phenol. Atlanta, GA: U.S. Department of Health and Human Services, Public Health Service.

Ahmed, S., Rasul, M.G., Martens, W.N., Brown, R. & Hashib, M.A. 2010. Heterogeneous photocatalytic degradation of phenols in wastewater: A review on current status and developments. Desalination 261: 3-18.

Alnaizy, R. & Akgerman, A. 2000. Advanced oxidation of phenolic compounds. Advances in Environmental Research 4: 233-244.

Ba-Abbad, M.M., Kadhum, A.A.H., Mohamad, A.B., Takriff, M.S. & Sopian K. 2010. Solar photocatalytic degradation of environmental pollutants using ZnO prepared by sol-gel: 2, 4-Dichlorophenol as case study. The International Journal of Thermal & Environmental Engineering 1: 37-42.

Bahadur, N.M., Furusawa, T., Sato, M., Kurayama, F. & Suzuki, N. 2010. Rapid synthesis, characterization and optical properties of TiO2 coated ZnO nanocomposite particles by a novel microwave irradiation method. Materials Research Bulletin 45: 1383-1388.

Behera, N.K. 2009. Treatment of industrial effluents in a bioreactor. Dissertation, National Institute of Technology, Rourkela (Unpublished).

Benhebal, H., Chaib, M., Salmon, T., Geens, J., Leonard, A., Lambert, SD, Crine, M. & Heinrich, B. 2013. Photocatalytic degradation of phenol and benzoic acid using zinc oxide powders prepared by the sol–gel process. Alexandria Engineering Journal 52: 517-523.

Bhattacharjee, C.R., Purkayastha, D.D., Bhattacharjee, S. & Nath, A. 2011. Homogeneous chemical precipitation route to ZnO nanosphericals. Assam University Journal of Science and Technology 7: 122-127.

Burton, A.W., Ong, K., Rea, T. & Chan, I.Y. 2009. On the estimation of average crystallite size of zeolites from the Scherrer equation: A critical evaluation of its application to zeolites with one-dimensional pore systems. Microporous and Mesoporous Materials 117: 75-90.

Chen, D. & Jay, A.K. 1999. Photocatalytic kinetics of phenol and its derivatives over UV irradiated TiO2. Applied Catalysis B: Environmental 23: 143-157.

Chowdhury, P. & Viraraghavan, T. 2009. Sonochemical degradation of chlorinated organic compounds, phenolic compounds and organic dyes- A review. Science of the Total Environment 407: 2472-2492.

Hayat, K., Gondal, M.A., Khaled, M.M., Ahmed, S. & Shemsi, A.M. 2011. Nano ZnO synthesis by modified sol gel method and its application in heterogeneous photocatalytic removal of phenol from water. Applied Catalysis A: General 393: 122-129

Hsu, C.C. & Wu, N.L. 2005. Synthesis and photocatalytic activity of ZnO/ZnO2 composite. Journal of Photochemistry and Photobiology A: Chemistry 172: 269-274.

Jang, Y.J., Simer, C. & Ohm, T. 2005. Comparison of zinc oxide nanoparticles and its nano-crystalline particles on the photocatalytic degradation of methylene blue. Materials Research Bulletin 41: 67-77.

Karunakaran, C. & Dhanalakshmi, R. 2008. Semiconductor-catalyzed degradation of phenols with sunlight. Solar Energy Materials and Solar Cells 92: 1315-1321.

Lanje, A.S., Sharma, S.J., Ningthoujam, R.S., Ahn, J.S. & Pode, R.B. 2013. Low temperature dielectric studies of zinc oxide (ZnO) nanoparticles prepared by precipitation method. Advanced Powder Technology 24(1): 331-335.

Lathasree, S., Rao, A.N., SivaSankar, B., Sadasivam, V. & Rengaraj, K. 2004. Heterogeneous photocatalytic mineralisation of phenols in aqueous solutions. Journal of Molecular Catalysis A: Chemical 223: 101-105.

Li, D., Haneda, H., Ohashi, N., Saito, N. & Hishita, S. 2005. Morphological reform of ZnO particles induced by coupling with MOx (M=V,W,Ce) and the effects on photocatalytic activity. Thin Solid Films 486: 20-23.

Pardeshi, S.K. & Patil, A.B. 2008. A simple route for photocatalytic degradation of phenol in aqueous zinc oxide suspension using solar energy. Solar Energy 82: 700-705.

Parida, K.M., Dash, S.S. & Das, D.P. 2006. Physico-chemical characterization and photocatalytic activity of zinc oxide prepared by various methods. Journal of Colloid and Interface Science 298: 787-793.

Panwar, R.S. 2009. Preparation of modified ZnO nanoparticles by sol-gel process and their characterization. Dissertation. Thapar University, Patiala (Unpublished).

Pudukudy, M. & Yaakob, Z. 2013. Hydrothermal synthesis of mesostructured ZnO micropyrmids with enhanced photocatalytic performance. Superlattices and Microstructures 63: 47-57.

Raoufi, D. 2013. Synthesis and microstructural properties of ZnO nanoparticles prepared by precipitation method. Renewable Energy 50: 932-937.

Rezapour, M. & Talebian, N. 2011. Comparison of structural, optical properties and photocatalytic activity of ZnO with different morphologies: Effect of synthesis methods and reaction media. Materials Chemistry and Physics 129: 249-255.

Sakthivel, S., Neppolian, B., Shankar, M.V., Arabindoo, B., Palanichamy, M. & Murugesan, V. 2003. Solar photocatalytic degradation of azo dye: Comparison of photocatalytic efficiency of ZnO and TiO2. Solar Energy Materials and Solar Cells 77: 65-82.

Sobczyńsk, A., Duczmal, Ł. & Zmudziński, W. 2004. Phenol destruction by photocatalysis on TiO2: An attempt to solve the reaction mechanism. Journal of Molecular Catalysis A: Chemical 213: 225-230.

Tsay, C.Y., Fan, K.S., Chen, S.H. & Tsai, C.H. 2010. Preparation and characterization of ZnO transparent semiconductor thin films by sol-gel method. Journal of Alloys and Compounds 495: 126-130.

Valtierra, J.M., Moctezuma, E., Manuel, S.C. & Claudio, F.R. 2005. Global photonic efficiency for phenol degradation and mineralization in heterogeneous photocatalysis. Journal of Photochemistry and Photobiology A: Chemistry 174: 246-252.

Wang, H., Xie, C., Zhang, W., Cai, S., Yang, Z. & Gui, Y. 2007. Comparison of dye degradation efficiency using ZnO powders with various size scales. Journal of Hazardous Materials 141: 645-652.

Yusoff, N., Ong, S.A., Ho, L.N., Wong, Y.S. & Khalik, W. 2014. Degradation of phenol through solar-photocatalytic treatment by zinc oxide in aqueous solution. Desalination and Water Treatment 54(6): 1621-1628.

Zaki, M.I., Nohman, A.K.H., Nashed, S. & Fahim, R.B. 1987. Assessment of textural consequences of compacting calcined chromia gel by nitrogen sorption isotherms. Colloids and Surfaces 23: 1-14.

Zulfakar, M., Hairul, N.A.H., Akmal, H.M.R. & Rahman, M.A. 2011. Photocatalytic degradation of phenol in a fluidized bed reactor utilizing immobilized TiO2 photocatalyst: Characterization and process studies. Journal of Applied Sciences 11: 2320-2326.

 

 

*Pengarang untuk surat-menyurat; email: lnho@unimap.edu.my

 

 

 

 

 

 

sebelumnya