Sains Malaysiana 46(9)(2017): 15051512

http://dx.doi.org/10.17576/jsm-2017-4609-20

 

Effects of Fermentation Time and pH on Soursop (Annona muricata) Vinegar Production towards its Chemical Compositions

(Kesan Masa Fermentasi dan pH terhadap Penghasilan Cuka Durian Belanda (Annona muricata) dan Komposisi Kimianya)

 

CHIN WAI HO1, AZWAN MAT LAZIM1, SHAZRUL FAZRY2, UMI KALSUM HJ HUSSAIN ZAKI3 & SENG JOE LIM1*

 

1School of Chemical Sciences and Food Technology, Faculty of Science and Technology

Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

2School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

3Food Science and Food Safety, Food Technology Research Centre, Malaysian Agricultural Research and Development Institute (MARDI), 43400 Serdang, Selangor Darul Ehsan

Malaysia

Diserahkan: 31 Ogos 2016/Diterima: 28 April 2017

 

ABSTRACT

Vinegar is a liquid product that undergoes both alcoholic and acetous fermentation of sugar (carbohydrate) sources. Soursop (Annona muricata) is easily available in Malaysia throughout the year. However, it is also highly perishable and has a short shelf-life. Therefore, in this research, soursop was used in the production of vinegar, to increase its utilisation and reduce wastage. The objectives of this research were to determine the effects of fermentation time and pH on soursop vinegar using a 3 5 factorial design and to determine its chemical compositions. It was found that pH and fermentation time showed significant (p<0.05) effects on the reduction of sugar content and the production of acetic acid, while only fermentation time showed a significant effect on the production of ethanol. The interaction between factors did not exhibit any statistical significance (p>0.05). It was evident that the sugar concentration reduces over time and it was inversely proportional to the ethanol and acetic acid concentrations, due to the conversion of sugar to ethanol and subsequently acetic acid. It was found that higher pH (pH5.5) gave significantly (p<0.05) higher acetic acid production in the vinegar, while pH has no significant (p>0.05) effect on ethanol production. There were no significant differences (p>0.05) in vitamin C content in all vinegar samples. Thus, it can be established that at fermentation time of 120 h and pH5.5, more sugar was used and more ethanol and acetic acid were produced.

 

Keywords: Acetous fermentation; alcoholic fermentation; soursop; vinegar; yeast

 

 

ABSTRAK

Cuka merupakan produk cecair yang telah melalui proses fermentasi alkohol dan aselom pada sumber gula (karbohidrat). Durian belanda (Annona muricata) merupakan buah-buahan yang amat popular dan senang diperoleh di Malaysia sepanjang tahun. Walau bagaimanapun, durian belanda merupakan buah-buahan yang sangat mudah rosak dan mempunyai jangka hayat yang pendek. Oleh itu, dalam kajian ini, durian belanda telah digunakan untuk menghasilkan cuka untuk mengurangkan pembaziran serta meningkatkan penggunaannya. Objektif kajian ini adalah untuk mengenal pasti kesan masa fermentasi dan pH terhadap penghasilan cuka durian belanda dengan menggunakan reka bentuk eksperimen berfaktor 3 5 dan mengenal pasti komposisi kimianya. Hasil daripada kajian ini menunjukkan bahawa masa fermentasi dan pH memberi kesan yang bererti (p<0.05) ke atas kandungan gula dan penghasilan asid asetik, manakala hanya masa fermentasi memberi kesan yang bererti (p<0.05) ke atas penghasilan etanol. Interaksi antara faktor tidak menunjukkan kesan yang bererti (p>0.05). Dapat diperhatikan bahawa kepekatan gula menurun dengan peningkatan masa fermentasi dan ia adalah berkadar songsang dengan kepekatan etanol dan asid asetik. Ini disebabkan oleh penukaran gula kepada etanol dan kemudiannya asid asetik. Didapati juga pada pH yang lebih tinggi (pH5.5), penghasilan asid asetik adalah lebih tinggi secara bererti (p<0.05), tetapi nilai pH tidak memberi kesan bererti (p>0.05) pada penghasilan etanol. Kandungan vitamin C tidak menunjukkan perbezaan bererti (p<0.05) dalam semua sampel. Secara keseluruhannya, pada masa fermentasi 120 jam dan pH5.5, didapati gula paling banyak digunakan manakala etanol dan asid asetik paling banyak dihasilkan.

 

Kata kunci: Cuka; durian belanda; fermentasi alkohol; fermentasi asetous; yis.

RUJUKAN

Adetuyi, F.O. & Ibrahim, T.A. 2014. Effect of fermentation time on the phenolic, flavonoid and vitamin C contents and antioxidant activities of okra (Abelmoschus esculentus) seeds. Nigerian Food Journal 32(2): 128-137.

Ammar, A.A., Asmeret, A.B. & Teamrat, A.G. 2013. A new method for rapid determination of carbohydrate and total carbon concentrations using UV spectrophotometry. Carbohydrate Polymers 97: 253-261.

Bazirake, G.W.B., Byarugaba, W., Tumusiime, M. & Kimono, D.A. 2014. The technology of producing banana wine vinegar from starch of banana peels. African Journal of Food Science and Technology 5(1): 1-5.

Betiku, E. & Taiwo, A.E. 2015. Modeling and optimization of bioethanol production from breadfruit starch hydrolyzate vis--vis response surface methodology and artificial neural network. Renewable energy 74: 87-94.

Budak, N.H., Aykin, E., Seydim, A.C., Greene, A.K. & Seydim, Z.B.G. 2014. Functional properties of vinegar. Journal of Food Science 79(5): 757-764.

Buyuksirit, T. & Kuleasan, H. 2014. Antimicrobial agents produced by yeasts. International Journal of Biological, Biomolecular, Agricultural, Food and Biotechnological Engineering 8(10): 1096-1099.

Cairns, A.M., Watson, M., Creanor, S.L. & Foye, R.H. 2002. The pH and titratable acidity of a range of diluting drinks and their potential effect on dental erosion. Journal of Dentistry 30: 313-317.

Cameron, A.C. & Windmeijer, F.A.G. 1996. R-Squared measures for count data regression models with applications to health-care utilization. Journal of Business & Economic Statistics 14(2): 209-220.

Chen, Q., Liu, A., Zhao, J., Qin, O., Sun, Z. & Lin, H. 2013. Monitoring vinegar acetic fermentation using a colorimetric sensor array. Sensors and Actuators B 183: 608-616.

Dabija, A. & Hatnean, C.A. 2014. Study concerning the quality of apple vinegar obtained through classical method. Journal of Agroalimentary Processes and Technologies 20(4): 304-310.

Dung, N.T.P., Tuong, N.H. & Phong, H.X. 2014. Study on ethanol fermentation conditions from molasses by thermo-tolerant yeasts. International Journal of Business and Applied Science 1: 13-22.

Food Act and Regulation. 1985. Standards and Particular Labeling Requirements for Food: Vinegar Sauce, Chutney and Pickle. Putrajaya: Safety and Food Quality Section.

Fushimi, T., Tayama, K., Fukaya, M., Kotakoshi, K., Nakai, N. & Tsukamoto, Y. 2001. Acetic acid feeding enhances glycogen repletion in liver and skeletal muscle of rats. Journal of Nutrition 131: 1973-1977.

Heinzl, H. & Mittlbock, M. 2003. Pseudo R-squared measures for poisson regression models with over- or uderdispersion. Computational Statistics & Data Analysis 44(1): 253-271.

Hernandez, Y., Lobo, M.G. & Gonzalez, M. 2006. Determination of vitamin C tropical fruits: A comparative evaluation of methods. Journal of Food Chemistry 96: 654-664.

Iersel, M.F.M., Dieren, B., Rombouts, F.M. & Abee, T. 1999. Flavour formation and cell physiology during the production of alcohol-free beer with immobilized Saccharomyces cerevisiae. Enzyme and Microbial Technology 24(7): 407- 411.

Iersel, M.F.M., Brouwer-Post, E., Rombouts, F.M. & Abee, T. 2000. Influence of yeast immobilization on fermentation and aldehyde reduction during the production of alcohol-free beer. Enzyme and Microbial Technology 26(8): 602-607.

Maris, A.J.A., Abbott, D.A., Bellissimi, E., Brink, J., Kuyper, M., Luttik, M.A.H., Wisselink, H.W., Scheffers, W.A., Dijken, J.P. & Pronk, J.T. 2006. Alcoholic fermentation of carbon sources in biomass hydrolysates by Saccharomyces cerevisiae: Current status. Antonie Van Leeuwenhoek 90: 391-418.

Narendranath, N.V. & Power, R. 2005. Relationship between pH and medium dissolved solids in terms of growth and metabolism of Lactobacilli and Saccharomyces cerevisiae during ethanol production. Applied Environmental Microbiology 71(5): 2239-2243.

Okamura, T., Ogata, T., Minamimoto, N., Takeno, T., Noda, H., Fukuda, S. & Ohsugi, M. 2001. Characteristics of wine produced by mushroom fermentation. Bioscience, Biotechnology, and Biochemistry 65(7): 1596-1600.

Okigbo, R.N. & Obire, O. 2009. Mycoflora and production of wine from fruits of soursop (Annona Muricata L.). International Journal of Wine Research 1: 1-9.

Pooja, S. & Soumitra, B. 2013. Optimization of process parameters for vinegar production using banana fermentation. International Journal of Research in Engineering and Technology 2(9): 501-514.

Quek, M.C., Chin, N.L. & Yusof, Y.A. 2013. Modelling of rheological behavior of soursop juice concentrates using shear rate-temperature-concentration superposition. Journal of Food Engineering 118: 380-386.

Qui, J., Ren, C., Fan, J. & Li, Z. 2010. Antioxidant activities of aged oat vinegar in vitro and in mouse serum and liver. Journal of the Science and Food Agriculture 90(11): 1951- 1958.

Rajko, V. & Janez, H. 1999. Synthesis of higher alcohols during cider processing. Food Chemistry 67: 287-294.

Raspor, P. & Goranovic, D. 2008. Biotechnological applications of acetic acid bacteria. Critical Reviews in Biotechnology 28: 101-124.

Tesfaye, W., Morales, M.L., Garcia-Parrilla, M.C. & Troncoso, A.M. 2002. Wine vinegar: Technology, authenticity and quality evaluation. Trends in Food Science and Technology 13: 12-21.

Ubeda, C., Hidalgo, C., Torija, M.J., Mas, A., Troncoso, A.M. & Morales, M.L. 2011. Evaluation of antioxidant activity and total phenols index in persimmon vinegars produced by different processes. LWT - Food Science and Technology 44: 1591-1596.

Umme, A., Asbi, B.A., Salmah, Y., Junainah, A.H. & Jamilah, B. 1996. Characteristics of soursop natural puree and determination of optimum conditions for pasteurization. Food Chemistry 58(1): 119-124.

 

*Pengarang untuk surat-menyurat; email: joe@ukm.edu.my

 

 

 

 

 

 

sebelumnya