Sains Malaysiana 46(9)(2017): 1557–1563


Acrylamide Optical Sensor Based on Hydrolysis Using Bacillus sp. Strain ZK34 Containing Amidase Properties

(Sensor Optik Akrilamida Berasaskan Hidrolisis Menggunakan Bacillus sp. Strain ZK34 yang Mengandungi Sifat Amidase)




1School of Chemical Sciences and Food Technology, Faculty of Science and Technology

Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia


2Industrial Chemical Technology Programme, Faculty of Sciences and Technology

Universiti Sains Islam Malaysia, 71800 USIM Nilai, Negeri Sembilan Darul Khusus, Malaysia


3Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia


Diserahkan: 16 Januari 2017/Diterima: 11 Mei 2017




In this work, a new optical screening method for acrylamide was developed. Bacterial Bacillus sp. strain ZK 34 was used to hydrolyse acrylamide to the corresponding acid and ammonia. Nessler’s reagent was used to detect the produced ammonia and the yellow complex formed was treated as signal. Bacterial pellet was immobilised in the alginate membrane. The optimum composition of alginate used is 2%. The mass ratio of alginate:bacterial of 1:0.5 gave the optimum respond. Optimum concentration for NaOH and Nessler’s reagent were 0.075 M and 2.5 mM, respectively. The yellow complex of mercury (II) amido-iodine formed was directly proportional to the concentrations of acrylamide up to 50.00 ppm with the limit of detection of 1.30 ppm. This sensor shows a good reproducibility which the relatives standard deviation (RSD) values from 3.17-6.15%. Therefore, the detection of acrylamide based on the amidase hydrolysis is suitable for screening this carcinogen compound.


Keywords: Acrylamide; amidase; Nessler’s reagent; optical detection



Dalam kajian ini, satu kaedah baharu untuk penyaringan akrilamida secara optik telah dibangunkan. Bakteria Bacillus sp. strain ZK 34 telah digunakan untuk menghidrolisiskan akrilamida kepada asid yang sepadan dan amonia. Reagen Nessler telah digunakan untuk mengesan amonia yang terhasil dan pembentukan sebatian kuning diambil kira sebagai isyarat. Palet bakteria telah dipegunkan di dalam membran alginat. Komposisi alginat yang optimum digunakan ialah 2%. Nisbah jisim alginat:bakteria pada 1:0.5 memberi rangsangan yang optimum. Kepekatan NaOH dan reagen Nessler yang optimum masing-masing ialah 0.075 M dan 2.5 mM. Sebatian kuning iaitu raksa (II) amido-iodin yang terbentuk berkadar langsung dengan kepekatan akrilamida sehingga 50.00 ppm dengan had pengesanan 1.30 ppm. Sensor ini menunjukkan kebolehulangan yang baik iaitu sisihan paiwai relatif (RSD) daripada 3.17-6.15%. Maka pengesanan akrilamida berasaskan hidrolisis amidase adalah sesuai untuk penyaringan sebatian yang karsinogen ini.


Kata kunci: Akrilamida; amidase; pengesanan optik; reagen Nessler



Arip, M.N.M., Heng, L.Y., Ahmad, M. & Ujang, S. 2013. A cell-based potentiometric biosensor using the fungus lentinus sajor-caju for permethrin determination in treated wood. Talanta 116: 776-781.

Batra, B., Lata, S. & Pundir, C.S. 2013a. Construction of an improved amperometric acrylamide biosensor based on hemoglobin immobilized onto carboxylated multi-walled carbon nanotubes/iron oxide nanoparticles/chitosan composite film. Bioprocess and Biosystems Engineering 36(11): 1591-1599.

Batra, B., Lata, S., Sharma, M. & Pundir, C.S. 2013b. An acrylamide biosensor based on immobilization of hemoglobin onto multiwalled carbon nanotube/copper nanoparticles/ polyaniline hybrid film. Analytical Biochemistry 433(2): 210-217.

Batra, B. & Pundir, C.S. 2016. Detection of acrylamide by biosensors. In Acrylamide in Food: Analysis, Content and Potential Health Effects, edited by Gökmen, V. Amsterdam: Academic Press. pp. 497-505.

Friedman, M. 2003. Chemistry, biochemistry, and safety of acrylamide. A review. Journal of Agricultural and Food Chemistry 51(16): 4504-4526.

Garabagiu, S. & Mihailescu, G. 2011. Simple hemoglobin-gold nanoparticles modified electrode for the amperometric detection of acrylamide. Journal of Electroanalytical Chemistry 659(2): 196-200.

Hu, Q., Xu, X., Fu, Y. & Li, Y. 2015. Rapid methods for detecting acrylamide in thermally processed foods: A review. Food Control 56: 135-146.

IARC. 1994. Monographs on the Evaluation of Carcinogenic Risks to Humans, Some Industrial Chemicals Ed. 60. Lyon, France: International Agency for Research on Cancer.

Ignatov, O.V., Rogatcheva, S.M., Kozulin, S.V. & Khorkina, N.A. 1997. Acrylamide and acrylic acid determination using respiratory activity of microbial cells. Biosensors and Bioelectronics 12(2): 105-111.

Kepekci Tekkeli, S.E., Önal, C. & Önal, A. 2012. A review of current methods for the determination of acrylamide in food products. Food Analytical Methods 5(1): 29-39.

Krajewska, A., Radecki, J. & Radecka, H. 2008. A voltammetric biosensor based on glassy carbon electrodes modified with single-walled carbon nanotubes/hemoglobin for detection of acrylamide in water extracts from potato crisps. Sensors 8(9): 5832-5844.

Lineback, D.R., Coughlin, J.R. & Stadler, R.H. 2012. Acrylamide in foods: A review of the science and future considerations. Annual Review of Food Science and Technology 3: 15-35.

Ling, Y.P. & Heng, L.Y. 2014. Reflectance based sensor for carrageenan utilizing methylene blue embedded acrylic microspheres. Sensors and Actuators B: Chemical 192: 247-252.

Nawaz, M.S., Khan, A.A., Seng, J.E., Leakey, J.E., Siitonen, P.H. & Cerniglia, C.E. 1994. Purification and characterization of an amidase from an acrylamide-degrading Rhodococcus sp. Applied and Environmental Microbiology 60(9): 3343-3348.

Paleologos, E.K. & Kontominas, M.G. 2005. Determination of acrylamide and methacrylamide by normal phase high performance liquid chromatography and UV detection. Journal of Chromatography A 1077(2): 128-135.

Prabu, C.S. & Thatheyus, A.J. 2007. Biodegradation of acrylamide employing free and immobilized cells of Pseudomonas aeruginosa. International Biodeterioration & Biodegradation 60: 69-73.

Shukor, M.Y., Gusmanizar, N., Azmi, N.A., Hamid, M., Ramli, J., Shamaan, N.A. & Syed, M.A. 2009. Isolation and characterization of an acrylamide-degrading Bacillus cereus. Journal of Environmental Biology 30(1): 57-64.

Silva, N.A.F., Matos, M.J., Karmali, A. & Racha, M.M. 2011. An electrochemical biosensor for acrylamide detection: Merits and limitations. Portugaliae Electrochimica Acta 29: 361-373.

Silva, N., Gil, D., Karmali, A. & Matos, M. 2009. Biosensor for acrylamide based on an ion-selective electrode using whole cells of Pseudomonas aeruginosa containing amidase activity. Biocatalysis and Biotransformation 27(2): 143-151.

Stobiecka, A., Radecka, H. & Radecki, J. 2007. Novel voltammetric biosensor for determining acrylamide in food samples. Biosensors and Bioelectronics 22(9-10): 2165-2170.

Supian, S.M., Ling, T.L., Heng, L.Y. & Chong, K.F. 2013. Quantitative determination of Al(III) ion by using Alizarin Red S including its microspheres optical sensing material. Analytical Methods 5(10): 2602-2609.

Syed, M.A., Ahmad, S.A., Kusnin, N. & Shukor, M.Y.A. 2012. Purification and characterization of amidase from acrylamide-degrading bacterium Burkholderia sp. strain DR. Y27. Afican Journal of Biotechnology 11: 329-336.

Tareke, E., Rydberg, P., Karlsson, P., Eriksson, S. & Törnqvist, M. 2002. Analysis of acrylamide, a carcinogen formed in heated foodstuffs. Journal of Agricultural and Food Chemistry 50(17): 4998-5006.

Timmer, B., Olthuis, W. & Berg, A.v.d. 2005. Ammonia sensors and their applications-A review. Sensors and Actuators B: Chemical 107(2): 666-677.

Zyzak, D.V., Sanders, R.A., Stojanovic, M., Tallmadge, D.H., Eberhart, B.L., Ewald, D.K., Gruber, D.C., Morsch, T.R., Strothers, M.A., Rizzi, G.P. & Villagran, M.D. 2003. Acrylamide formation mechanism in heated foods. Journal of Agricultural and Food Chemistry 51(16): 4782-4787.



*Pengarang untuk surat-menyurat; email: