Sains Malaysiana 47(1)(2018): 189–193

http://dx.doi.org/10.17576/jsm-2018-4701-22

 

The Effect of Annealing to the Hardness of High Y2O3-Oxide Dispersion Strengthened (ODS) Ferritic Steels

(Kesan Sepuh Lindap terhadap Kekerasan Keluli Ferit ODS-Y2O3 Tinggi)

 

FARHA MIZANA SHAMSUDIN1*, SHAHIDAN RADIMAN1, YUSOF ABDULLAH2 & NASRI A. HAMID3

 

1Nuclear Science Programme, School of Applied Physics, Faculty of Science and Technology,

Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

2Material Technology Group, Industrial Technology Division, Malaysian Nuclear Agency, Bangi

43000 Kajang, Selangor Darul Ehsan, Malaysia

 

3Center for Nuclear Energy, College of Engineering, Universiti Tenaga Nasional, Putrajaya Campus, Jalan Ikram UNITEN, 43000 Kajang, Selangor Darul Ehsan, Malaysia

 

Diserahkan: 6 Oktober 2016/Diterima: 13 Jun 2017

 

ABSTRACT

The purpose of this study was to investigate the effect of annealing to the hardness of high Y2O3-oxide dispersion strengthened (ODS) ferritic steels. The samples were prepared by mechanical alloying method followed by Cold Isostatic Pressing (CIP). After compaction process, the samples were sintered at 1100°C for 1 h in a tube furnace. The crystal structure and morphology of samples were analyzed by X-ray Diffraction (XRD) measurement and characterized by using field emission scanning electron microscope (FESEM), respectively. The hardness of samples was measured by using a micro-Vickers hardness tester with a load of 200 gf at annealing temperature of 600°C, 800°C and 1000°C, respectively. The Vickers hardness value (HV0,2) versus annealing temperature graph showed that the hardness of all samples started to decrease at temperature of 600°C due to grain growth. The hardness value of all samples (1Y and 5Y) identified at this annealing temperature is 855 HV0,2 and 808 HV0, 2, respectively.

 

Keywords: Electron microscopy; hardness measurement; mechanical alloying; ODS ferritic steel; XRD measurement

 

ABSTRAK

Tujuan kajian ini dijalankan adalah untuk mengkaji kesan sepuh lindap terhadap kekerasan keluli ferit ODS-Y2O3 tinggi. Sampel bagi kajian ini telah dibangunkan dengan menggunakan kaedah pengaloian mekanik dan diikuti dengan kaedah Tekan Isostasi Sejuk (CIP). Selepas proses pemampatan, sampel didedahkan dengan rawatan haba pada suhu 1100°C selama 1 jam di dalam relau pembakaran. Struktur kristal dan morfologi sampel masing-masing telah dianalisis dengan menggunakan Meter Belauan Sinar-X (XRD) dan dicirikan dengan menggunakan mikroskop elektron pengimbas pancaran medan (FESEM). Kekerasan sampel pula telah diukur dengan menggunakan alat pengukur mikro-Vickers dengan beban sebanyak 200 gf masing-masing untuk suhu sepuh lindap pada 600°C, 800°C dan 1000°C. Graf nilai kekerasan Vickers (HV0,2) melawan suhu sepuh lindap bagi semua sampel telah mendedahkan bahawa kekerasan bagi semua sampel mula menurun pada suhu 600°C disebabkan oleh fenomena pembesaran zarah. Nilai kekerasan untuk semua sampel (1Y dan 5Y) yang telah dikenal pasti pada suhu sepuhlindap ini (600°C) adalah masing-masing sebanyak 855 HV0,2 dan 808 HV0,2.

 

Kata kunci: Keluli ferit ODS; mikroskop elektron; pencirian XRD; pengaloian mekanikal;pengukuran kekerasan

 

RUJUKAN

 

Alinger, M.J., Odette, G.R. & Lucas, G.E. 2002. Tensile and fracture toughness properties of MA957: Implications to the development of nanocomposited ferritic alloys. Journal of Nuclear Materials 307-311(Part 1): 484-489.

Boulnat, X., Fabregue, D., Perez, M., Mathon, M.H. & de Carlan, Y. 2013. High temperature tensile properties of nano-oxide dispersion strengthened ferritic steels produced by mechanical alloying and spark plasma sintering. Metallurgical and Materials Transactions A 44: 2461-2465.

Fischer, J.J. 1978. Dispersion Strengthened Ferritic Alloy for Use in Liquid-Metal Fast Breeder Reactors (LMFBRS). US4075010A.

Gelles, D.S. 1996. Microstructural examination of commercial ferritic alloys at 200 dpa. Journal of Nuclear Materials 233- 237: 293-298.

Hayashi, T., Sarosi, P.M., Schneibel, J.H. & Mills, M.J. 2008. Creep response and deformation processes in nanocluster-strengthened ferritic steels. Acta Materialia 56: 1407-1416.

Hoeltzer, D.T., Bentley, J., Sokolov, M.A., Miller, M.K., Odette, G.R. & Alinger, M.J. 2007. Influence of particle dispersions on the high-temperature strength of ferritic alloys. Journal of Nuclear Materials 367-370(Part A): 166-172.

Kim, T.K., Noh, S., Kang, S.H., Park, J.J., Jin, H.J., Lee, M.K., Jang, J. & Rhee, C.K. 2016. Current status and future perspective of advanced radiation resistant oxide dispersion strengthened steel (ARROS) development for nuclear reactor system applications. Journal of Nuclear Engineering and Technology 48: 572-594.

Klueh, R.L., Maziasz, P.J., Kim, I.S., Heatherly, L., Hoelzer, D.T., Hashimoto, N., Kenik, E.A. & Miyahara, K. 2002. Tensile and creep properties of an oxide dispersion-strengthened ferritic steel. Journal of Nuclear Materials 307-311: 773-777.

Li, Q., Parish, C.M., Powers, K.A. & Miller, M.K. 2014. Helium solubility and bubble formation in a nanostructured ferritic alloy. Journal of Nuclear Materials 445: 165-174.

McClintock, D.A., Sokolov, M.A., Hoelzer, D.T. & Nanstad, R.K. 2009. Mechanical properties of irradiated ODS-EUROFER and nanocluster strengthened 14YWT. Journal of Nuclear Materials 392: 353-359.

Miao, P., Odette, G.R., Yamamoto, T., Alinger, M. & Klingensmith, D. 2008. Thermal stability of nano-structured ferritic alloy. Journal of Nuclear Materials 377: 59-64.

Miller, M.K. & Zhang, Y. 2011. Fabrication and characterization of APT specimens from high dose heavy ion irradiated materials. Ultramicroscopy 111: 672-675.

Nuclear Energy Agency (NEA). 2014. Technology Roadmap Update for Generation IV Nuclear Energy Systems. Generation IV International Forum (GIF).

Pei, H. 2013. On the structure-property correlation and the evolution of nanofeatures in 12-13.5% Cr oxide dispersion strengthened ferritic steels. PhD Thesis. Karlsruher Institute for Technologies (Unpublished).

Saber, M., Xu, W., Li, L., Zhu, Y., Koch, C.C. & Scattergood, R.O. 2014. Size effect of primary Y2O3 additions on the characteristics of the nanostructured ferritic ODS alloys: Comparing as- milled and as-milled/annealed alloys using S/TEM. Journal of Nuclear Materials 452: 223-229.

Susila, P., Sturm, D., Heilmaier, M., Murty, B.S. & Sarma, V.S. 2011. Effect of yttria particle size on the microstructure and compression creep properties of nanostructured oxide dispersion strengthened ferritic (Fe-12Cr-2W-0.5Y2O3) alloy. Journal of Materials Science and Engineering A 528: 4579-4584.

Ukai, S., Harada, M., Okada, H., Inoue, M., Nomura, S., Shikakura, S., Asabe, K., Nishida, T. & Fujiwara, M. 1993. Alloying design of oxide dispersion strengthened ferritic steel for long life FBRs core materials. Journal of Nuclear Materials 204: 65-73.

Ukai, S., Okuda, T., Fujiwara, M., Kobayashi, T., Mizuta, S. & Nakashima, H. 2002. Characterization of high temperature creep properties in recrystallized 12Cr-ODS ferritic steel claddings. Journal of Nuclear Engineering and Technology 39: 872-879.

Williams, C.A., Unifantowicz, P., Baluc, N., Smith, G.D.W. & Marquis, E.A. 2013. The formation and evolution of oxide particles in oxide-dispersion-strengthened ferritic steels during processing. Acta Materialia 61: 2219-2235.

Zakine, C., Prioul, C. & Francois, D. 1996. Creep behaviour of ODS steels. Journal of Materials Science and Engineering A 219(1-2): 102-108.

 

 

*Pengarang untuk surat-menyurat; email: farha90mizana@gmail.com

 

 

 

 

sebelumnya