Sains Malaysiana 47(5)(2018): 1045–1050

http://dx.doi.org/10.17576/jsm-2018-4705-22

 

Assessing Diet of the Rufous-Winged Philentoma (Philentoma pyrhoptera) in Lowland Tropical Forest using Next-Generation Sequencing

(Penilaian Diet Filentoma Sayap Merah (Philentoma pyrhoptera) di Hutan Tropika Tanah Rendah menggunakan Penjujukan Generasi Seterusnya)

 

MOHAMMAD SAIFUL MANSOR1*, SHUKOR MD. NOR1 & ROSLI RAMLI2

 

1School of Environmental and Natural Resource Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

2Institute of Biological Sciences, University of Malaya, 50603 Kuala Lumpur, Federal Territory, Malaysia

 

Diserahkan: 15 September 2017/Diterima: 19 Disember 2017

 

ABSTRACT

Dietary study provides understanding in predator-prey relationships, yet diet of tropical forest birds is poorly understood. In this study, a non-invasive method, next-generation sequencing (Illumina MiSeq platform) was used to identify prey in the faecal samples of the Rufous-winged Philentoma (Philentoma pyrhoptera). Dietary samples were collected in lowland tropical forest of central Peninsular Malaysia. A general invertebrate primer pair was used for the first time to assess diet of tropical birds. The USEARCH was used to cluster the COI mtDNA sequences into Operational Taxonomic Unit (OTU). OTU sequences were aligned and queried through the GenBank or Biodiversity of Life Database (BOLD). We identified 26 distinct arthropod taxa from 31 OTUs. Of all OTUs, there was three that could be identified up to species level, 20 to genus level, three to family level and five could not assigned to any taxa (the BLAST hits were poor). All sequences were identified to class Insecta belonging to 18 families from four orders, where Lepidoptera representing major insect order consumed by study bird species. This non-invasive molecular approach provides a practical and rapid technique to understand of how energy flows across ecosystems. This technique could be very useful to screen for possible particular pest insects consumed by insectivores (e.g. birds and bats) in crop plantation. A comprehensive arthropod studies and local reference sequen

 

Keywords: Dietary ecology; MiSeq; next-generation sequencing (NGS); Philentoma pyrhoptera; tropical birds

ABSTRAK

Kajian diet memberi pemahaman tentang hubungan antara pemangsa-mangsa, namun diet burung di hutan tropika kurang difahami. Dalam kajian ini, satu kaedah yang tidak invasif, penjujukan generasi akan datang (platform Illumina MiSeq) digunakan untuk mengenal pasti mangsa dalam sampel najis Filentoma Sayap Merah (Philentoma pyrhoptera). Sampel makanan diambil di hutan tropika tanah pamah di Semenanjung Malaysia. Set primer umum untuk invertebrata digunakan pertama kalinya untuk menilai diet burung tropika. Pautan USEARCH digunakan untuk mengkelompok jujukan mtDNA COI kepada Unit Operasi Taksonomi (OTU). Jujukan OTU telah disunting menggunakan perisian BioEdit dan ditentukan menerusi Pangkalan Data GenBank atau Biodiversity of Life Database (BOLD). Kami mengenal pasti 26 taksonomi arthropoda yang unik daripada 31 OTUs. Daripada semua OTUs, terdapat tiga yang boleh dikenal pasti hingga ke tahap spesies, 20 hingga genus, tiga hingga famili dan lima tidak dapat ditaksirkan (kadar BLAST yang rendah). Semua jujukan dikenal pasti sebagai kelas Insecta yang terdiri daripada 18 famili daripada empat order dengan Lepidoptera mewakili order serangga yang utama dimakan oleh spesies burung kajian. Pendekatan molekul yang tidak invasif ini menyediakan teknik yang praktikal dan cepat untuk memahami bagaimana tenaga mengalir merentasi ekosistem. Teknik ini juga sangat berguna untuk melihat kemungkinan serangga perosak yang tertentu dimakan oleh insektivor (contohnya, burung dan kelawar) di ladang tanaman. Kajian artropoda yang komprehensif dan jujukan rujukan tempatan perlu ditambah ke pangkalan data untuk meningkatkan peratusan jujukan yang boleh dikenal pasti.

 

Kata kunci: Burung tropika; ekologi pemakanan; MiSeq; penjujukan generasi akan datang (NGS); Philentoma pyrhoptera

RUJUKAN

 

Baxter, C.V., Fausch, K.D. & Carl Saunders, W. 2005. Tangled webs: Reciprocal flows of invertebrate prey link streams and riparian zones. Freshwater Biology 50: 201-220.

Borghesio, L. & Laiolo, P. 2004. Seasonal foraging ecology in a forest avifauna of northern Kenya. Journal of Tropical Ecology 20(2): 145-155.

Brown, D.S., Jarman, S.N. & Symondson, W.O.C. 2012. Pyrosequencing of prey DNA in reptile faeces: Analysis of earthworm consumption by slow worms. Molecular Ecology Resources 12: 259-266.

Chua, L.S.L. & Saw, L.G. 2006. Plants of Krau. Kuala Lumpur: Forest Research Institute Malaysia.

Clare, E.L., Symondson, W.O., Broders, H., Fabianek, F., Fraser, E.E., MacKenzie, A., Boughen, A., Hamilton, R., Willis, C.K., Martinez-Nuñez, F. & Menzies, A.K. 2014. The diet of Myotis lucifugus across Canada: Assessing foraging quality and diet variability. Molecular Ecology 23: 3618–3632.

Clare, E.L., Barber, B.R., Sweeney, B.W., Hebert, P.D.N. & Fenton, M.B. 2011. Eating local: Influences of habitat on the diet of little brown bats (Myotis lucifugus). Molecular Ecology 20: 1772-1780.

Clare, E.L., Fraser, E.E., Braid, H.E., Fenton, M.B. & Hebert, P.D. 2009. Species on the menu of a generalist predator, the eastern red bat (Lasiurus borealis): Using a molecular approach to detect arthropod prey. Molecular Ecology 18: 2532-2542.

Clark, D.B. 1996. Abolishing virginity. Journal of Tropical Ecology 12(5): 735-739.

Edgar, R.C. 2013. UPARSE: Highly accurate OTU sequences from microbial amplicon reads. Nature Methods 10: 996-998.

Emlen, J.M. 1966. The role of time and energy in food preference. American Naturalist 100: 611-617.

Hope, P.R., Bohmann, K., Gilbert, M.T., Zepeda-Mendoza, M.L., Razgour, O. & Jones, G. 2014. Second generation sequencing and morphological faecal analysis reveal unexpected foraging behaviour by Myotis nattereri(Chiroptera, Vespertilionidae) in winter. Frontiers in Zoology 11(1): 39.

Jedlicka, J.A., Sharma, A.M. & Almeida, R.P.P. 2013. Molecular tools reveal diets of insectivorous birds from predator fecal matter. Conservation Genetic Resources 5: 879-885.

King, R.A., Read, D.S., Traugott, M. & Symondson, W.O.C. 2008. Molecular analysis of predation: A review of best practice for DNA-based approaches. Molecular Ecology 17: 947- 963.

King, R.A., Symondson, W.O.C. & Thomas, R.J. 2015. Molecular analysis of faecal samples from birds to identify potential crop pests and useful biocontrol agents in natural areas. Bulletin of Entomological Research 105(3): 261-272.

Li, D., Ding, Y., Yuan, Y., Lloyd, H. & Zhang, Z. 2014. Female tidal mudflat crabs represent a critical food resource for migratory Red-crowned Cranes in the Yellow River Delta, China. Bird Conservation International 24: 416-428.

MacArthur, R.H. & Pianka, E.R. 1966. On the optimal use of a patchy environment. American Naturalist 100: 603-609.

Mansor, M.S. & Ramli, R. 2017. Niche separation in flycatcher-like species in the lowland rainforests of Malaysia. Behavioural Processes 140: 121-126.

Mansor, M.S. & Sah, S.A.M. 2012. The influence of habitat structure on bird species composition in lowland Malaysian rain forests. Tropical Life Science Research 23(1): 1-14.

Mäntylä, E., Klemola, T. & Laaksonen, T. 2011. Birds help plants: A meta-analysis of top-down trophic cascades caused by avian predators. Oecologia 165: 143-151.

Naoki, K. 2007. Arthropod resource partitioning omnivorous tanagers (Tangara spp.) in western Ecuador. Auk 124: 197- 209.

Pompanon, F., Deagle, B.E., Symondson, W.O., Brown, D.S., Jarman, S.N. & Taberlet, P. 2012. Who is eating what: Diet assessment using next generation sequencing. Molecular Ecology 21: 1931-1950.

Ratnasingham, S. & Hebert, P.D.N. 2007. BOLD: The barcode of life data system (www.barcodinglife.org). Molecular Ecology Notes 7: 355-364.

Razgour, O., Clare, E.L., Zeale, M.R., Hanmer, J., Schnell, I.B., Rasmussen, M., Gilbert, T.P. & Jones, G. 2011. High-throughput sequencing offers insight into mechanisms of resource partitioning in cryptic bat species. Ecology and Evolution 1(4): 556-570.

Razo-González, M., Castaño-Meneses, G., Callejas-Chavero, A., Pérez-Velázquez, D. & Palacios-Vargas, J.G. 2014. Temporal variations of soil arthropods community structure in El Pedregal de San Ángel Ecological Reserve, Mexico City, Mexico. Applied Soil Ecology 83: 88-94.

Salinas-Ramos, V.B., Montalvo, L.G.H., León-Regagnon, V., Arrizabalaga-Escudero, A. & Clare, E.L. 2015. Dietary overlap and seasonality in three species of mormoopid bats from a tropical dry forest. Molecular Ecology 24(20): 5296-5307.

Schmitz, O.J., Hawlena, D. & Trussell, G.C. 2010. Predator control of ecosystem nutrient dynamics. Ecology Letters 13: 1199-1209.

Sherry, T.W., Johnson, M.D., Williams, K.A., Kaban, J.D., McAvoy, C.K., Hallauer, A.M., Rainey, S. & Xu, S. 2016. Dietary opportunism, resource partitioning, and consumption of coffee berry borers by five species of migratory wood warblers (Parulidae) wintering in Jamaican shade coffee plantations. Journal of Field Ornithology 87(3): 273-292.

Sint, D., Raso, L. & Traugott, M. 2012. Advances in multiplex PCR: Balancing primer efficiencies and improving detection success. Methods in Ecology and Evolution 3: 898-905.

Terraube, J., Arroyo, B., Madders, M. & Mougeot, F. 2011. Diet specialisation and foraging efficiency under fluctuating vole abundance: A comparison between generalist and specialist avian predators. Oikos 120(2): 234-244.

Vesterinen, E.J., Ruokolainen, L., Wahlberg, N., Peña, C., Roslin, T., Laine, V.N., Vasko, V., Sääksjärvi, I.E., Norrdahl, K. & Lilley, T.M. 2016. What you need is what you eat? Prey selection by the bat Myotis daubentonii. Molecular Ecology 25(7): 1581-1594.

Wells, D.R. 2007. The Birds of the Thai-Malay Peninsula. Vol. 2. The Passerine. Christopher Helm, London, U.K.

Wildlife Act. 2010. Laws of Malaysia Act 716: Wildlife Conservation Act 2010. Kuala Lumpur: Percetakan Nasional Malaysia Berhad.

Wong, C.K., Chiu, M.C., Sun, Y.H., Hong, S.Y. & Kuo, M.H. 2015. Using molecular scatology to identify aquatic and terrestrial prey in the diet of a riparian predator, the plumbeous water redstart Phoenicurus fuliginosa. Bird Study 62(3): 1-9.

Yong, D.L., Qie, L., Sodhi, N.S., Koh, L.P., Peh, K.S., Lee, T.M., Lim, H.C. & Lim, S.L.H. 2011. Do insectivorous bird communities decline on land-bridge forest islands in Peninsular Malaysia? Journal of Tropical Ecology 27(1): 1-4.

 

*Pengarang untuk surat-menyurat; email: msaifulmansor@ukm.edu.my

 

 

 

 

sebelumnya