Sains Malaysiana 47(6)(2018): 1101–1108


Quantification of HSP70 Gene Expression and Determination of Capacitation Status of Magnetically Separated Cryopreserved Bovine Spermatozoa

at Different Thawing Temperature and Time

(Kuantifikasi Ekspresi Gen HSP70 dan Penentuan Status Kapasitasi Sperma Lembu

yang telah Dikrioawet pada Suhu Pencairan dan Masa yang Berbeza)




1Department of Biology, Faculty of Applied Sciences, Universiti Teknologi MARA

26400 Bandar Tun Abd Razak Jengka, Pahang Darul Makmur, Malaysia


2Department of Biology, Faculty of Applied Sciences, Universiti Teknologi MARA

40450 Shah Alam, Selangor Darul Ehsan, Malaysia


3Department of Physiology, Faculty of Medicine, UKM Medical Centre, Level 18, Pre-Clinical Building

Jalan Yaacob Latif, Bandar Tun Razak, 56000 Cheras, Kuala Lumpur, Federal Territory, Malaysia


4Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz

50300 Kuala Lumpur, Federal Territory, Malaysia


Diserahkan: 23 November 2015/Diterima: 10 Januari 2018




The role of heat shock protein in reproduction is widely known as a molecular chaperone in aiding and repairing protein formation when stress occurred. The present objectives were to evaluate the effect of different thawing temperature and time on the expression of HSP70 gene expression and the capacitation status in cryopreserved bovine spermatozoa. Briefly, fresh ejaculates were obtained from three different adult bulls. The semen then underwent a sperm washing technique known as Magnetic Activated Cell Sorting System (MACS) and later on, cryopreserved. The sperm- containing straws were then thawed at five different thawing temperatures and time post-cryostorage; 20°C for 13 s, 37°C for 30 s, 40°C for 7 s, 60°C for 6 s and 80°C for 5 s. The RNA was extracted from each of the sperm’s pellets and converted to cDNA prior to the qPCR process. Capacitation status was then determined by means of CTC assay. The results showed that after the process of amplification, there is a significant different of HSP70 gene expression in MACS process samples when the thawing process was performed at 37°C for 30 s, with p<0.05. Furthermore, the CTC assay also showed that thawing at the same temperature gave less capacitated spermatozoa with p<0.05. As a conclusion, MACS yield spermatozoa with a better expression of HSP70 gene and less capacitated spermatozoa when thawing was done at 37°C for 30 s.


Keywords: CTC; heat-shock protein; MAC; sperm cryopreservation; thawing



Peranan protein kejutan haba dalam pembiakan telah diketahui secara meluas terutamanya sebagai molekul pengiring dalam membantu dan memperbaik pembentukan protein apabila tekanan berlaku. Objektif semasa adalah untuk menilai kesan suhu dan masa pencairan yang berbeza pada ekspresi gen protein HSP70 dan status kapasitasi sperma lembu yang telah dikrioawet. Secara ringkas, ejakulasi segar diperoleh daripada tiga lembu jantan dewasa yang berbeza. Air mani kemudiannya menjalani teknik penyediaan sperma yang dikenali sebagai Magnetic Activated Cell Sorting System (MACS) dan kemudiannya dikrioawet. Selepas itu, straw yang mengandungi sperma kemudiannya dicairkan pada lima suhu pencairan dan masa yang berbeza; 20°C selama 13 s, 37°C selama 30 s, 40°C selama 7 s, 60°C selama 6 s dan 80°C selama 5 s. RNA kemudian diekstrak daripada pelet sperma dan ditukarkan kepada cDNA sebelum proses qPCR. Status kapasitasi kemudiannya telah dilakukan melalui esei CTC. Keputusan kajian menunjukkan bahawa selepas proses penguatan, ekspresi gen HSP70 terdapat perbezaan yang signifikan terhadap sperma yang telah menjalani MACS apabila pencairan dilakukan pada suhu 37°C selama 30 s dengan nilai p<0.05. Tambahan pula, asai CTC juga menunjukkan bahawa pencairan pada suhu yang sama memberikan sperma yang kurang berkapasiti dengan nilai p<0.05. Kesimpulannya, MACS boleh memberikan spermatozoa yang berkualiti baik dengan ekspresi HSP70 yang tinggi dan sperma yang kurang berkapasiti apabila pencairan dilakukan pada 37°C selama 30 s.


Kata kunci: CTC; krioawet sperma; MACS; pencairan; protein kejutan haba


Aitken, R.J. 2011. The capacitation-apoptosis highway: Oxysterols and mammalian sperm function. Biology of Reproduction 85(1): 9-12.

Al-Badry, K.I. 2012. Effect of various thawing times and temperatures on frozen semen quality of friesian bulls in Iraq. Int. J. Anim. Veter. Adv. 4(6): 384-388.

Bailey, J.L., Bilodeau, J.F. & Cormier, N. 2000. Semen cryopreservation in domestic animals: A damaging and capacitating phenomenon. Journal of Andrology 21(1): 1-7.

Calamera, J.C., Buffone, M.G., Doncel, G.F., Brugo-Olmedo, S., de Vincentiis, S., Calamera, M.M., Storey, B.T. & Alvarez, J.G. 2010. Effect of thawing temperature on the motility recovery of cryopreserved human spermatozoa. Fertility and Sterility 93(3): 789-794.

Contri, A., Claudio, V., Massimo, F., Laura, W. & Augusto, C. 2010. Effect of semen preparation on casa motility results in cryopreserved bull spermatozoa. Theriogenology 74(3): 424-435.

Degheidy, T.H., Abdelfattah, Seif, A., Albuz, F.K., Gazi, S. & Abbas, S. 2015. Magnetic activated cell sorting: an effective method for reduction of sperm DNA fragmentation in varicocele men prior to assisted reproductive techniques. Andrologia 47(8): 892-896.

Dirican, E.K., Özgün, O.D., Akarsu, S., Ak?n, K.O., Ercan, Ö., Uğurlu, M., Çamsar?, C., Kany?lmaz, O., Kaya, A. & Ünsal, A. 2008. Clinical outcome of magnetic activated cell sorting of non-apoptotic spermatozoa before density gradient centrifugation for assisted reproduction. Journal of Assisted Reproduction and Genetics 25(8): 375-381.

Gilbert, I., Bissonnette, N., Boissonneault, G., Vallee, M. & Robert, C. 2007. A molecular analysis of the population of mRNA in bovine spermatozoa. Reproduction 133(6): 1073-1086.

Grunewald, S., Paasch, U., Glander, H.J. & Anderegg, U. 2005. Mature human spermatozoa do not transcribe novel RNA. Andrologia 37(23): 69-71.

Guo, H., Xu, Y.M., Ye, Z.Q., Yu, J.H., Fu, Q., Sa, Y.L., Hu, X.Y. & Song, L.J. 2010. Heat-shock protein 70 expression in the seminal plasma of patients with chronic bacterial prostatitis and chronic prostatitis/chronic pelvic pain syndrome. Prostate Cancer and Prostatic Diseases 13(4): 338-342.

Huang, S.Y., Kuo, Y.H., Lee, Y.P., Tsou, H.L., Lin, E.C., Ju, C.C. & Lee, W.C. 2000. Association of heat shock protein 70 with semen quality in boars. Animal Reproduction Science 63(3-4): 231-240.

Kang, J.H. & Park, J.K. 2005. Technical paper on microfluidic devices-cell separation technology. Asia Pacific Biotech News 9(21): 1135-1146.

Kurz, A., Viertel, D., Herrmann, A. & Müller, K. 2005. Localization of phosphatidylserine in boar sperm cell membranes during capacitation and acrosome reaction. Reproduction 130(5): 615-626.

Maxwell, W.M.C. & Johnson, L.A. 1997. Chlortetracycline analysis of boar spermatozoa after incubation, flow cytometric sorting, cooling, or cryopreservation. Molecular Reproduction and Development 46(3): 408-418.

Monterroso, V.H., Drury, K.C., Ealy, A.D., Edwards, J.L. & Hansen, P.J. 1995. Effect of heat shock on function of frozen/thawed bull spermatozoa. Theriogenology 44(7): 947-961.

Neuer, A., Spandorfer, S.D., Giraldo, P., Dieterle, S., Rosenwaks, Z. & Witkin, S.S. 2000. The role of heat shock proteins in reproduction. Human Reproduction Update 6(2): 149-159.

Oh, S.A., Park, Y.J., You, Y.A., Mohamed, E.A. & Pang, M.G. 2010. Capacitation status of stored boar spermatozoa is related to litter size of sows. Animal Reproduction Science 121(1): 131-138.

O'Hara, L., Hanrahan, J.P., Richardson, L., Donovan, A., Fair, S., Evans, A.C.O. & Lonergan, P. 2010. Effect of storage duration, storage temperature, and diluent on the viability and fertility of fresh ram sperm. Theriogenology 73(4): 541-549.

Ostermeier, G.C., Dix, D.J., Miller, D., Khatri, P. & Krawetz, S.A. 2002. Spermatozoal RNA profiles of normal fertile men. The Lancet 360(9335): 772-777.

Piterková, J., Lenka, L., Barbora, M., Aleš, L. & Petřivalský, M. 2013. Nitric oxide and reactive oxygen species regulate the accumulation of heat shock proteins in tomato leaves in response to heat shock and pathogen infection. Plant Science 207: 57-65.

Rastegarnia, A., Abdolhossein, S., Tohid, R.T., Bita, E. & Vahid, S. 2013. Effect of different thawing rates on post-thaw viability, kinematic parameters, and chromatin structure of buffalo (Bubalus bubalis) spermatozoa. Cell Journal (Yakhteh) 14(4): 306-313.

Roostaei, M., Nikbakht, G.H., Baghbanzadeh, A. & Tajik, P. 2008. RNA extraction and leptin receptor mRNA detection in bull ejaculated spermatozoa. J. Vet. Res. 63(2): 41-46.

Said, T.M., Agarwal, A., Zborowski, M., Grunewald, S., Glander, H.J. & Paasch, U. 2008. Utility of magnetic cell separation as a molecular sperm preparation technique. Journal of Andrology 29(2): 134-142.

Said, T.M., Grunewald, S., Paasch, U., Rasch, M., Agarwal, A. & Glander, H.J. 2005. Effects of magnetic-activated cell sorting on sperm motility and cryosurvival rates. Fertility and Sterility 83(5): 1442-1446.

Simon, L., Deborah, L., Joanne, M. & Sheena, E.M.L. 2011. Sperm DNA damage measured by the alkaline comet assay as an independent predictor of male infertility and in vitro fertilization success. Fertility and Sterility 95(2): 652-657.

Söderquist, L., Madrid-Bury, N. & Rodriguez-Martinez, H. 1997. Assessment of ram sperm membrane integrity following different thawing procedures. Theriogenology 48(7): 1115-1125.

Wang, W.H., Abeydeera, L.R., Fraser, L.R. & Niwa, K. 1995. Functional analysis using chlortetracycline fluorescence and in vitro fertilization of frozen-thawed ejaculated boar spermatozoa incubated in a protein-free chemically defined medium. Reproduction 104(2): 305-313.

Yeste, M. 2016. Sperm cryopreservation update: Cryodamage, markers, and factors affecting the sperm freezability in pigs. Theriogenology 85(1): 47-64.



*Pengarang untuk surat-menyurat; email: sharifahfaezah@pahang.uitm.