Sains Malaysiana 48(10)(2019): 2113–2123

http://dx.doi.org/10.17576/jsm-2019-4810-06

 

Calibration of Rock Cutting Numerical Model based on Monitoring Data

(Penentukuran Model Berangka bagi Pemotongan Batu berdasarkan Data Pemantauan)

 

VEDRAN PAVLIC1, MARIO BACIC2* & MEHO SASA KOVACEVIC2

 

1Hidroinzenjering d.o.o., Okucanska 30, 10 000 Zagreb, Croatia

 

2University of Zagreb, Faculty of Civil Engineering, Kaciceva 26, 10 000 Zagreb, Croatia

 

Diserahkan: 10 April 2019/Diterima: 17 September 2019

 

ABSTRACT

Prediction of the deformation increment and the final displacement of the rock cutting is a challenging task. Many ambiguities linked with unpredictable nature or rock mass make it difficult to apply the adequate contingency measures. Implementation of common approach, which includes modelling of discontinuity effects with estimated reduction of rock mass strength and modulus of elasticity, usually does not yield satisfactory results. Therefore, a calibration of FEM based numerical model was made by conducting parametric analysis which feeds upon data obtained from extensive on-site monitoring system. A step forward was made in description of numerical parameters of karst discontinuities through consideration of monitoring results, as well as excavation procedures, position, inclination and length of discontinuities and PDC (project design change).

 

Keywords: Discontinuities; karst; numerical modelling; observational method; rock mass

 

ABSTRAK

Ramalan kenaikan canggaan dan sesaran akhir pemotongan batu adalah satu tugas yang mencabar. Banyak kesamaran yang dikaitkan dengan sifat yang tidak dapat diramalkan atau jisim batu menyukarkan untuk menggunakan langkah kontingensi yang mencukupi. Pelaksanaan pendekatan biasa yang merangkumi pemodelan kesan ketakselanjaran dengan anggaran pengurangan kekuatan jisim batu dan modulus keanjalan, kebiasaannya tidak memberikan keputusan yang memuaskan. Oleh itu, penentukuran model berangka FEM dibuat dengan menjalankan analisis parametrik yang menggunakan data yang diperoleh daripada sistem pemantauan ekstensif di tapak. Satu penambahbaikan telah dibuat dalam penerangan parameter berangka ketakselanjaran karst dengan mempertimbangkan keputusan pemantauan serta prosedur pengorekan, kedudukan, kecenderungan dan panjang ketakselanjaran dan PDC (perubahan reka bentuk projek).

 

Kata kunci: Jisim batu; kaedah pemerapan; karst; ketakselanjaran; pemodelan berangka

RUJUKAN

Arbanas, Z. 2003. Construction of Zagrad foundation pit in Rijeka. Građevinar 55: 591-597.

Barton, N.R. & Bandis, S. 1990. Review of predictive capabilities of JRC-JCS model in engineering practice. Proc. Int. Symp. on Rock Joints, Rotterdam: Balkema, pp. 603-610.

Bieniawski, Z.T. 1989. Engineering Rock Mass Classifications. New York: Wiley.

Bjureland, W., Spross, J., Johansson, F., Prästings, A. & Larsson, S. 2017. Reliability aspects of rock tunnel design with the observational method. International Journal of Rock Mechanics & Mining Sciences 98: 102-110. https://doi. org/10.1016/j.ijrmms.2017.07.004.

Bonilla-Sierra, V., Scholtes, L., Donze, F.V. & Elmouttie, M. 2015. Rock slope stability analysis using photogrammetric data and DFN-DEM modelling. Acta Geotechnica 10(4): 497-511. https://doi.org/10.1007/s11440-015-0374-z.

Chen, S., Goh, T.L., Han, L. & Tovele, G.S.V. 2019. Effects of tectonic stresses and structural planes on slope deformation and stability at the Buzhaoba Open Pit Mine, China. Sains Malaysiana 48(2): 317-324. https://doi.org/10.17576/jsm- 2019-4802-07.

Frka, R. 2014. Digital Photography: Zagrad B2, B6. Rijeka.

Goodman, R.E. & Taylor, L.R. 1968. A model for the mechanics of jointed rock. Journal of the Soil Mechanics and Foundations Division, Proceedings of ASCE 94(SM3): 636-659.

Hammah, R.E., Yacoub, T.E., Corkum, B.C. & Curran, J.H. 2008. The practical modelling of discontinuous rock masses whit finite element analysis. The 42nd U.S. Rock Mechanics Symposium (USRMS), 29 June-2 July, San Francisco, California. American Rock Mechanics Association.

He, Y., Peng, S., Du, W., Tang, X. & Zeng, H. 2017. Laboratory study of acoustic velocity in different types of rocks at seismic frequency band. Sains Malaysiana 46(11): 2187-2193. http:// dx.doi.org/10.17576/jsm-2017-4611-20.

Hoek, E., Carranza-Torres, C.T. & Corkum, B. 2002. Hoek- Brown failure criterion-2002 edition. In Proceedings of the Fifth North American Rock Mechanics Symposium 1: 267-273.

Hoek, E. & Diederichs, M.S. 2006. Empirical estimation of rock mass modulus. International Journal of Rock Mechanics and Mining Sciences 43: 203-215. https://doi.org/10.1016/j. ijrmms.2005.06.005.

Huang, L., Xu, Z. & Zhou, C. 2009. Modeling and monitoring in a soft argillaceous shale tunnel. Acta Geotechnica 4: 273-282. https://doi.org/10.1007/s11440-009-0100-9.

Itasca. 2014. PFC Version 5.0 documentation.

Jing, L. & Hudson, J.A. 2002. Numerical methods in rock mechanics. International Journal of Rock Mechanics and Mining Sciences 39(4): 409-427. https://doi.org/10.1016/ S1365-1609(02)00065-5.

Jurić Kaćunić, D., Arapov, I. & Kovačević, M.S. 2011. New approach to the determination of stiffness of carbonate rocks in Croatian karst. Građevinar 63(2): 177-185.

Kujundzic, B. & Grujic, N. 1966. Correlation between static and dynamic investigations of rock mass “in situ”. Proc. of 1st ISRM Congress 1: 565-570.

Latha, G.M. & Garaga, A. 2012. Elasto-plastic analysis of jointed rocks using discrete continuum and equivalent continuum approaches. International Journal of Rock Mechanics & Mining Sciences 53: 56-63. https://doi.org/10.1016/j. ijrmms.2012.03.013.

Lin, J.S. & Ku, C.Y. 2006. Two-scale modeling of jointed rockmasses. Int. Jour. Rock Mech. Min. Sci. 43: 426-436. https://doi.org/10.1016/j.ijrmms.2005.07.009.

Louie, J.N. 2001. Faster, Better: Shear-wave velocity to 100 meters depth from refraction microtremor arrays. Bulletin of the Seismological Society of America 91(2): 347-364.

Mohd Razib, A.M., Goh, T.L.., Mazlan, N.A., Fahmi Abdul Ghani, M., Tuan Rusli, T.M., Ghani Rafek, A., Serasa, A.S., Chen, Y. & Zhang, M. 2018. A systematic approach of rock slope stability assessment: A case study at Gunung Kandu, Gopeng, Perak, Malaysia. Sains Malaysiana 47(7): 1413- 1421. http://dx.doi.org/10.17576/jsm-2018-4707-08.

Marinos, P. & Hoek, E. 2000. GSI - a geologically friendly tool for rock mass strength estimation. Proc. GeoEng2000.

Mas, I.D., Potyondy, D.O., Pierce, M. & Cundall, P.A. 2008. The smooth-joint contact model. 8th. World Congress on Computational Mechanics (WCCM8), 5th. European Congress on Computational Methods in Applied Sciences and Engineering (ECCOMAS 2008).

Pavlic, V. 2014. Residential-Business Complex with Underground Garage “Zagrad B”. Rijeka Projekt. Implementation geotechnical design: Construction pit protection design (stress-deformation analysis), 3300-666-2010/2, Institute IGH JSC.

Pollak, D. 2007. Influence of carbonate rock masses on their engineering-geological properties. Ph.D. thesis, Faculty of Mining, Geology and Petroleum Engineering, University of Zagreb, Zagreb (Unpublished).

Potyondy, D.O. & Cundall, P.A. 2004. A bonded-particle model for rock. International Journal of Rock Mechanics and Mining Sciences 41: 1329-1364. https://doi.org/10.1016/j. ijrmms.2004.09.011.

Rocscience Inc. 2010. Phase2 V7.0 - A Two-Dimensional Finite Element Analysis Program.

Savi, R. 2014. Residential-Business Complex with Underground Garage “Zagrad B”. Rijeka Projekt. Measurement and testing report, 2130-T-001/14, Institute IGH JSC.

Shen, C.K., Sadigh, K. & Herrmann, L.R. 1978. An analysis of NGI simple shear apparatus for cyclic soil testing. Dynamic Geotechnical Testing, ASTM STP 654. pp. 148-162.

Sturzeneger, M., Stead, D. & Pavicic, K. 2009. Close-range terrestrial digital photogrammetry and terrestrial laser scanning for discontinuity characterization on rock cuts. Engineering Geology 106(3-4): 163-182. https://doi. org/10.1016/j.enggeo.2009.03.004.

Tang, S.B., Huang, R.Q., Tang, C.A., Liang, Z.Z. & Heap, M.J. 2017. The failure processes analysis of rock slope using numerical modelling techniques. Engineering Failure Analysis 79: 999-1016. https://doi.org/10.1016/j. engfailanal.2017.06.029.

Tomac, V. 2012. Residential-Business Complex with Underground Garage “Zagrad B”. Rijeka Projekt. Graund anchor assessment tests report, BBR Adria Ltd.

Vuic, V.G., Opacak, G. & Pavicic, K. 2014. Residential-business complex with underground garage “Zagrad B”. Rijeka Projekt. Engineering Geological Mapping Report, 4300-3/14, Institute IGH JSC.

 

*Pengarang untuk surat-menyurat; email: mbacic@grad.hr

 

 

 

 

sebelumnya