Sains Malaysiana 48(9)(2019): 1887–1897

http://dx.doi.org/10.17576/jsm-2019-4809-09

 

Polymers Encapsulated Aspirin Loaded Silver Oxide Nanoparticles: Synthesis, Characterization and its Bio-Applications

(Aspirin Terkurung Polimer Dimuatkan Nanozarah Perak Oksida: Sintesis, Pencirian dan Bio-Penggunaan)

 

SHABIR AHMAD1, HIRA RASHID1, QUDISA JALIL1, SIDRA MUNIR1, BARKATULLAH2, SULAIMAN KHAN1, RIAZ ULLAH3*, ABDELAATY A. SHAHAT3,4, HAFIZ M. MAHMOOD5, ALMOQBIL A. NASER ABDULLAH A-MISHARI 3 & AHMAD BARI6

 

1Department of Chemistry, Islamia College University, Peshawar, KPK, Pakistan

 

2Department of Botany, Islamia College University, Peshawar, KPK, Pakistan

 

3Medicinal Aromatic and Poisonous Plants Research Centre, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia

 

4Department of Phytochemistry, National Research Centre, 33 EI Bohouth St., 12622, Dokki, Giza, Egypt

 

5Department of Pharmacology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia

 

6Central Lab, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia

 

Diserahkan: 20 Januari 2019/Diterima: 18 Jun 2019

 

ABSTRACT

Simple, facile and cost effective approach is used for the synthesis of Aspirin based silver oxide nano-particles (SONPs) by chemical wet method. The synthesized SONPs were loaded with Aspirin to form Asp-SONPs, which was confirmed with the help of UV spectroscopy. Characterization was done using spectroscopy techniques FTIR, SEM, TEM and XRD. Antimicrobial assay of Asp-SONPs were carried out against six bacterial strains (E. coli, Protues, Vibrio, Citrobacter, Enterobacter, S. aureus) and fungal strains (Curvularia, Alternaria, Rhizopus, Aspergillus, Helmithosporium, Paecilomyces) by well diffusion method which confirmed its potential application as an antimicrobial agent. Asp-SONPs-PVA also displayed highest insecticidal activity against both tested insects (Tribolium casterium and Callosobruchus chinensis) having LC50 value of 15.917, and 37.6365 and highest percent mortality at 1000 ppm was 67%, and 73%, respectively. PVA coated SONPs displayed encouraging phytotoxicity when exposed to allopathic, where Asp-SONPs coated PVA give excellent anthelmintic activity by killing or paralyzing all the species (earthworm) at 1000 ppm.

 

Keywords: Antimicrobial; antioxidant; aspirin; insecticidal; nanoparticles

 

ABSTRAK

Pendekatan yang mudah dan berkesan digunakan untuk mensintesis Aspirin berasaskan nanozarah perak beroksida (SONPs) dengan menggunakan kaedah kimia basah. SONPs tersintesis dengan Aspirin untuk membentuk Asp-SONPs, yang dikenal pasti dengan menggunakan Spektroskopi UV. Pencirian telah dilakukan menggunakan teknik spektroskopi iaitu FTIR, SEM, TEM dan XRD. Cerakinan antimikrob Asp-SONPs telah dijalankan terhadap enam strain bakteria (E. coli, Protues, Vibrio, Citrobacter, Enterobacter, S. aureus) dan strain kulat (Curvularia, Alternaria, Rhizopus, Aspergillus, Helmithosporium, Paecilomyces) dengan menggunakan kaedah resapan yang mengesahkan aplikasinya yang berpotensi sebagai agen antimikrob. Asp-SONPs-PVA juga menunjukkan aktiviti insektisid yang tertinggi terhadap kedua-dua serangga yang diuji (Tribolium casterium dan Callosobruchus chinensis) yang mempunyai nilai LC50 iaitu 15.917 dan 37.6365 dan peratus kematian tertinggi pada 1000 ppm masing-masing adalah 67% dan 73%. SONPs bersalut PVA menunjukkan kefitotoksikan menggalakkan apabila terdedah kepada alopati dengan Asp-SONPs bersalut PVA memberi aktiviti antelmin cemerlang dengan membunuh atau melumpuhkan semua spesies (cacing tanah) pada 1000 ppm.

 

Kata kunci: Antimikrob; antioksidan; aspirin; insektisid; nanozarah

RUJUKAN

Ahmad, S., Ullah, R., Naser M. AbdElsalam, Hassan, F., Ahtaram, B., Muhammad, T.J., Anwar, A.S. & Muhammad, A. 2014. One new royleanumoate from Teucrium royleanum Wall. ex Benth. The Scientific World Journal 2014: 581629.

Alaqad, K. & Saleh, T.A. 2016. Gold and silver nanoparticles: Synthesis methods, characterization routes and applications towards drugs. J. Environ. Anal. Toxicol. 6: 384.

Ali-Shtayeh, M. & Abu, G.S.I. 1999. Antifungal activity of plant extracts against dermatophytes. Mycoses 42(11-12): 665-672.

Balouiri, M., Sadiki, M. & Ibnsouda, S.K. 2016. Methods for in vitro evaluating antimicrobial activity: A review. Journal of Pharmaceutical Analysis 6(2): 71-79.

Bindhu, M. & Umadevi, M. 2015. Antibacterial and catalytic activities of green synthesized silver nanoparticles. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 135: 373-378.

Chiguvare, H., Opeoluwa, O.O., Reuben, M., Olukayode, A., Idris, A.O., Adebola, O.O., Benedicta, N.N., Sandile, P.S., Sneha, M. & Oluwatobi, S.O. 2016. Synthesis of silver nanoparticles using buchu plant extracts and their analgesic properties. Molecules 21: 774.

Choi, J.S., Lee, H., Park, Y.K., Kim, S.J., Kim, B.J., An, K.H., Kim, B.H. & Jung, S.C. 2016. Application of silver and silver oxide nanoparticles impregnated on activated carbon to the degradation of bromate. Journal of Nanoscience and Nanotechnology 16(5): 4493-4497.

Dhoondia, Z.H. & Chakraborty, H. 2012. Lactobacillus mediated synthesis of silver oxide nanoparticles. Nanomaterials and Nanotechnology https://doi.org/10.5772/55741.

Dinesh, D., Murugan, K., Madhiyazhagan, P., Panneerselvam, C., Kumar, P.M., Nicoletti, M., Jiang, W., Benelli, G., Chandramohan, B. & Suresh, U. 2015. Mosquitocidal and antibacterial activity of green-synthesized silver nanoparticles from Aloe vera extracts: Towards an effective tool against the malaria vector Anopheles stephensi? Parasitology Research 114(4): 1519-1529.

El Kassas, H.Y. & Attia, A.A. 2014. Bactericidal application and cytotoxic activity of biosynthesized silver nanoparticles with an extract of the red seaweed Pterocladiella capillacea on the HepG2 cell line. Asian Pac. J. Cancer Prev. 15(3): 1299-1306.

Fang, J., Zhong, C. & Mu, R. 2005. The study of deposited silver particulate films by simple method for efficient SERS. Chemical Physics Letters 401: 271-275.

Galya, T., Vladimir, S., Ivo, K., Radko, N., Jana, S. & Petr, S. 2008. Antibacterial poly (vinyl alcohol) film containing silver nanoparticles: Preparation and characterization. Journal of Applied Polymer Science 110(5): 3178-3185.

Gurunathan, S., Han, J.W., Eppakayala, V., Jeyaraj, M. & Kim, J.H. 2013. Cytotoxicity of biologically synthesized silver nanoparticles in MDA-MB-231 human breast cancer cells. BioMed Research International 2013: 535796.

Hosseinpour-Mashkani, S.M. & Ramezani, M. 2014. Silver and silver oxide nanoparticles: Synthesis and characterization by thermal decomposition. Materials Letters 130: 259-262.

Morones, J.R., Jose, L.E., Alejandra, C., Katherine, H., Juan, B.K., Jose, T.R.I. & Miguel, J.Y. 2005. The bactericidal effect of silver nanoparticles. Nanotechnology 16(10): 2346-2353.

Moukrad, N., Fouzia, R.F., Ikram, D. & Omar, Z. 2014. Phytotoxic activity of the zinc oxyde nanoparticles synthesized from different precursors on germination and radicle growth of seeds Lepidium sativum. International Journal of Scientific and Research Publications 4(12): 1-6.

Priya, S. & Santhi, S. 2015. Biosynthesis and in vitro anthelmintic activity of silver nanoparticles using aqueous leaf extracts of Azadirachta indica. World Journal of Pharmacy and Pharmaceutical Sciences 4(10): 2105-2116.

Rafique, M., Sadaf, I., Shahid Rafique, M. & Bilal Tahir, M. 2016. A review on green synthesis of silver nanoparticles and their applications. Artificial Cells, Nanomedicine, and Biotechnology 45(7): 1272-1291.

Siddiqui, M.R.H., Adil, S.F., Assal, M.E., Roushown, Ali. & Al- Warthan, A. 2013. Synthesis and characterization of silver oxide and silver chloride nanoparticles with high thermal stability. Asian J. Chem. 25(6): 3405-3409.

Sondi, I. & Salopek-Sondi, B. 2004. Silver nanoparticles as antimicrobial agent: A case study on E. coli as a model for Gram-negative bacteria. Journal of Colloid and Interface Science 275(1): 177-182.

Sudha, A., Jeyakanthan, J. & Srinivasan, P. 2017. Green synthesis of silver nanoparticles using Lippia nodiflora aerial extract and evaluation of their antioxidant, antibacterial and cytotoxic effects. Resource-Efficient Technologies 3(4): 506-515.

Ullah, S., Ibrar, M. & Muhammad, N. 2013. Pharmacognostic, larvicidal and phytotoxic profile of Coleus forskohlii and Rosmarinus officinalis. Journal of Pharmacognosy and Phytotherapy 5(4): 59-63.

Velammal, S.P., Devi, T.A. & Amaladhas, T.P. 2016. Antioxidant, antimicrobial and cytotoxic activities of silver and gold nanoparticles synthesized using Plumbago zeylanica bark. Journal of Nanostructure in Chemistry 6(3): 247-260.

Velayutham, K. & Ramanibai, R. 2016. Larvicidal activity of synthesized silver nanoparticles using isoamyl acetate identified in Annona squamosa leaves against Aedes aegypti and Culex quinquefasciatus. The Journal of Basic & Applied Zoology 74: 16-22.

Velayutham, K., Rahuman, A.A., Rajakumar, G., Roopan, S.M., Elango, G., Kamaraj, C., Marimuthu, S., Santhoshkumar, T., Iyappan, M. & Siva, C. 2013. Larvicidal activity of green synthesized silver nanoparticles using bark aqueous extract of Ficus racemosa against Culex quinquefasciatus and Culex gelidus. Asian Pacific Journal of Tropical Medicine 6(2): 95-101.

Yong, N.L., Ahmad, A. & Mohammad, A.W. 2013. Synthesis and characterization of silver oxide nanoparticles by a novel method. Int. J. Sci. Eng. Res. 4: 155-158.

 

*Pengarang untuk surat-menyurat; email: rullah@ksu.edu.sa

 

 

sebelumnya