Sains Malaysiana 49(10)(2020): 2465-2476

http://dx.doi.org/10.17576/jsm-2020-4910-12

 

Time-Kill Assay of N-(2-Bromoethyl)-7-Chloroquinilin-4-Amine (ACP 4A) with Fungistatic Activity against Aspergillus fumigatus

(Asai Masa Kematian Sebatian N-(2-Bromoetil)-7-Kloroquinilin-4-Amina (ACP 4A) dengan Aktiviti Fungistatiknya terhadap Aspergillus fumigatus)

 

DAYANG FREDALINA BASRI1, KUEK SZE YEE1, JACINTA SANTHANAM2, MOHD ASYRAF SHAMSUDIN3, NUR HANIS ZAKARIA3, JALIFAH LATIP3 & NURUL IZZATY HASSAN3*

 

1Centre for Diagnostic, Therapeutic & Investigative Studies (CODTIS), Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Federal Territory, Malaysia

 

2Centre for Toxicology and Health Risk Studies (CORE), Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Federal Territory, Malaysia

 

3Department of Chemical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

Diserahkan: 27 Ogos 2019/Diterima: 4 Mei 2020

 

ABSTRACT

Six pyrano[2,3-c]pyrazole-3-carboxylate and quinoline derivatives (ACP 1A, ACP 1B, ACP 1C, ACP 1D, ACP 2A and ACP 4A) synthesized and screened for antimicrobial activity against two selected Gram-positive bacteria (Staphylococcus aureus and Bacillus subtilis), three Gram-negative bacteria (Klebsiella pneumonia, Pseudomonas aeruginosa, and Escherichia coli), two yeast strains (Candida albicans and Candida glabrata) and two filamentous fungi (Aspergillus niger and Aspergillus fumigatus) using agar well diffusion method. Minimum inhibitory concentration (MIC) and minimum bactericidal/fungicidal concentration (MBC/MFC) of the compounds were determined using broth microdilution and streak plate method, respectively. Time-kill assay (TKA) analysis of N-(2-bromoethyl)-7-chloroquinilin-4-amine (ACP 4A) was subsequently conducted throughout the 24 h incubation period against A. fumigatus. Only ACP 4A was chosen for the evaluation of TKA analysis because the broth dilution assay confirmed that it is the most potent compound with antifungal activity. E. coli was the only one found to be susceptible to the ACP 4A compound at 20 and 30 mg mL-1 with an inhibition zone value of 15.00 ± 0.00 and 19.00 ± 0.00 mm, respectively. MIC values of ACP 4A compound against S. aureus and C. albicans were 800 µg mL-1. A. niger and A. fumigatus exhibited the highest susceptibility towards ACP 4A with the same MIC value (200 µg mL-1).  ACP 4A showed fungicidal effect against C. glabrata with the same MIC and MFC values at 800 µg mL-1. From TKA analysis, ACP 4A at 1 × MIC and 2 × MIC did not show fungicidal activity against A. fumigatus. In conclusion, ACP 4A has the potential to be developed as a fungistatic (non-fungicidal) antifungal agent, which is an advantage compared to other known fungicidal compounds, particularly in patients with a healthy immune system.

 

Keywords: Antimicrobial; bacteria; fungi; pyrano[2,3-c] pyrazole-3-carboxylate; quinoline

 

ABSTRAK

Enam terbitan kumpulan pirano[2,3-c]pirazola-3-karboksil dan kuinolina (ACP 1A, ACP 1B, ACP 1C, ACP 1D, ACP 2A, dan ACP 4A) telah disaring untuk aktiviti antimikrob ke atas dua bakteria Gram positif(Staphylococcus aureus dan Bacillus subtilis), tiga bakteria Gram negatif(Klebsiella pneumoniae, Pseudomonas aeruginosa dan Escherichia coli), dua strain yis (Candida albicans dan Candida glabrata) dan dua spesies fungus berfilamen(Aspergillus niger danAspergillus fumigatus) menggunakan kaedah resapan telaga. Nilai kepekatan perencatan minimum (MIC) dan kepekatan bakterisid/fungisid minimum (MBC/MFC) sebatian ditentukan menggunakan kaedah mikropencairan kaldu dan teknik coretan plat. Asai masa kematian (TKA) sepanjang tempoh inkubasi selama 24 jam untuk sebatian N-(2-Bromoetil)-7-klorokuinilin-4-amina (ACP 4A) ditentukan ke atas A. fumigatus. HanyaE. coli sahaja didapati rentan terhadap sebatian ACP 4A pada 20 dan 30 mg mL-1 dengan nilai zon perencatan masing-masing, 15.00 ± 0.00 dan 19.00 ± 0.00 mm. Nilai MIC sebatian ACP 4A terhadapS. aureus dan C. albicans adalah 800 µg mL-1. A. niger danA. fumigatus menunjukkan kerentanan yang paling tinggi terhadap sebatian ACP 4A dengan nilai MIC yang sama (200 µg mL-1). Sebatian ACP 4A menunjukkan kesan fungisid ke atasC. glabrata dengan nilai MIC dan MFC yang sama iaitu 800 µg mL-1. Daripada analisis TKA, ACP 4A pada 1 × MIC dan 2 × MIC tidak menunjukkan aktiviti fungisid terhadapA. fumigatus. Kesimpulannya, sebatian ACP 4A berpotensi untuk dimajukan sebagai agen antikulat fungistatik yang merupakan kelebihan berbanding dengan agen fungisid yang lain, terutamanya pada pesakit dengan immunisasi yang baik.

 

Kata kunci: Antimikrob; bakteria; kuinolina; kulat; pirano[2,3-c]pirazola-3-karboksil

 

RUJUKAN

Ambethkar, S., Padmini, V. & Bhuvanesh, N. 2015. A green and efficient protocol for the synthesis of dihydropyranol[2,3-c]pyrazole derivatives via a one-pot, four component reaction by grinding method. Journal of Advanced Research 6(6): 975-985.

Bahrin, L.G., Sarbu, L.G., Hopf, H., Jones, P.G., Babii, C., Stefan, M. & Birsa, M.L. 2016. The influence of halogen substituents on the biological properties of sulfur-containing flavonoids. Bioorganic & Medicinal Chemistry 24(14): 3166-3173.

CLSI. 2008. M38-A2. Reference Method for Broth Dilution Antifungal Susceptibility Testing of Filamentous Fungi; approved standard-second edition. CLSI, Wayne, PA, USA.

Constantino, L. & Barlocco, D. 2006. Privileged structures as leads in medicinal chemistry. Current Medicinal Chemistry 13(1): 65-85.

El Shehry, M.F., Ghorab, M.M., Abbas, S.Y., Fayed, E.A., Shedid, S.A. & Ammar, Y.A. 2018. Quinoline derivatives bearing pyrazole moiety: Synthesis and biological evaluation as possible antibacterial and antifungal agents. European Journal of Medicinal Chemistry 143(2018): 1463-1473.

Eswaran, S., Adhikari, A.V., Chowdhury, I.H., Pal, N.K. & Thomas, K. 2010. New quinoline derivatives: synthesis and investigation of antibacterial and antituberculosis properties. European Journal of Medicinal Chemistry 45(8): 3374-3383.

Garudachari, B., Satyanarayana, M., Thippeswamy, B., Shivakumar, C., Shivananda, K., Hegde, G. & Isloor, A.M. 2012. Synthesis, characterization and antimicrobial studies of some new quinoline incorporated benzimidazole derivatives. European Journal of Medicinal Chemistry 54(2012): 900-906.

Joly, V., Bolard, J. & Yeni, P. 1992. In vitro models for studying toxicity of antifungal agents.  Antimicrobial Agents and Chemotherapy 36(9): 1799-1804.

Kamath, P.R., Sunil, D. & Ajees, A.A. 2016. Synthesis of indole–quinolineoxadiazoles: Their anticancer potential and computational tubulin binding studies. Research on Chemical Intermediates 42(6): 5899-5914.

Kaur, K., Jain, M., Reddy, R.P. & Jain, R. 2010. Quinolines and structurally related heterocycles as antimalarials. European Journal of Medicinal Chemistry 45(8): 3245-3264.

King, T., Dykes, G. & Kristianti, R. 2008. Comparative evaluation of methods commonly used to determine antimicrobial susceptibility to plant extracts and phenolic compounds. Journal of AOAC International 91(6): 1423-1429.

Klančnik, A., Piskernik, S., Jeršek, B. & Možina, S.S. 2010. Evaluation of diffusion and dilution methods to determine the antibacterial activity of plant extracts. Journal of Microbiological Methods 81(2): 121-126.

Mallamace, F., Corsaro, C., Mallamace, D., Vasi, C., Vasi, S. & Stanley, H.E. 2016. Dynamical properties of water-methanol solutions. The Journal of Chemical Physics 144(6): 064506.

Mandhane, P.G., Joshi, R.S., Mahajan, P.S., Nikam, M.D., Nagargoje, D.R. & Gill, C.H. 2015. Synthesis, characterization, and antimicrobial screening of substituted quiazolinones derivatives. Arabian Journal of Chemistry 8(4): 474-479.

Mann, C. & Markham, J. 1998. A new method for determining the minimum inhibitory concentration of essential oils. Journal of Applied Microbiology 84(4): 538-544.

Mohammat, M.F., Maarop, M.S., Shaameri, Z., Wibowo, A., Johari, S.A. & Hamzah, A.S. 2018. Practical synthesis and electronic study of non-spiro and spiropyrano [2, 3-c] pyrazole-3-carboxylate derivatives via uncatalyzed domino one-pot, four-component reactions. Organic Communication 11: 149-162.

Moreno, S., Scheyer, T., Romano, C.S. & Vojnov, A.A. 2006. Antioxidant and antimicrobial activities of rosemary extracts linked to their polyphenol composition. Free Radical Research 40(2): 223-231.

Musiol, R., Serda, M., Hensel-Bielowka, S. & Polanski, J. 2010a. Quinoline-based antifungals. Current Medicinal Chemistry 17(18): 1960-1973.

Musiol, R., Jampilek, J., Nycz, J.E., Pesko, M., Carroll, J., Kralova, K., Vejsova, M., O’Mahony, J., Coffey, A., Mrozek, A. & Polanski, J. 2010b. Investigating the activity spectrum for ring-substituted 8-hydroxyquinolines. Molecules 15(1): 288-304.

Osés, S.M., Pascual-Mate, A., De La Fuente, D., De Pablo, A., Fernandez-Muino, M.A. & Sancho, M.T. 2016. Comparison of methods to determine the antibacterial activity of honeys against Staphylococcus aureus. NJAS-Wageningen Journal of Life Sciences 78(2016): 29-33.

Pawar, P., Mane, B., Salve, M. & Bafana, S. 2017. Synthesis and anticonvulsant activity of n-substituted-7-hydroxy-4-methyl-2-oxa-quinoline derivatives. International Journal of Drug Research and Technology 3(3): 60-66.

Ramírez-Prada, J., Robledo, S.M., Vélez, I.D., del Pilar Crespo, M., Quirogo, J., Abonia, R., Montoya, A., Svetaz, L., Zacchino, S. & Insuasty, B. 2017. Synthesis of novel quinoline-based 4,5-dihydro-1H-pyrazoles as potential anticancer, antifungal, antibaterial and antiprotozoal agents. European Journal of Chemistry 131(2017): 237-254.

Shakhatreh, M.A.K., Al-Smadi, M.L., Khabour, O.F., Shuaibu, F.A., Hussein, E.I. & Alzoubi, K.H. 2016. Study of the antibacterial and antifungal activities of synthetic benzyl bromides, ketones, and corresponding chalcone derivatives. Drug Design, Development and Therapy 10(2016): 3653.

Stein, R.A. 2011. Bacterial infections of humans: Epidemiology and control. JAMA 305(14): 1488-1489.

Vaghasiya, R., Ghodasara, H., Vachharajani, P. & Shah, V. 2014.  Synthesis, characterization, and biological evaluation of 6-substituted-2-(substituted-phenyl)-quinoline derivatives bearing 4-amino-1, 2, 4-triazole-3-thiol ring at c-4 position. International Letters of Chemistry, Physics and Astronomy 8: 30-37.

Vandekerckhove, S., Tran, H.G., Desmet, T. & D’hooghe, M. 2013. Evaluation of (4-aminobutyloxy) quinolines as a novel class of antifungal agents. Bioorganic & Medicinal Chemistry Letters 23(16): 4641-4643.

 

*Pengarang untuk surat-menyurat; email: drizz@ukm.edu.my

   

 

sebelumnya