Sains Malaysiana 49(4)(2020): 859-870

http://dx.doi.org/10.17576/jsm-2020-4904-15

A New Crescent Moon Visibility Criteria using Circular Regression Model: A Case Study of Teluk Kemang, Malaysia

 (Kriteria Baru Kebolehnampakan Bulan Sabit menggunakan Model Regresi Berkeliling: Suatu Kajian Kes Teluk Kemang, Malaysia)

 

NAZHATULSHIMA AHMAD1*, MOHD SAIFUL ANWAR MOHD NAWAWI2, MOHD ZAMBRI ZAINUDDIN2, ZUHAILI MOHD NASIR3­, ROSSITA MOHAMAD YUNUS3 & IBRAHIM MOHAMED3

 

1Space Physics Laboratory, Department of Physics, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Federal Territory, Malaysia

 2Islamic Astronomy Programme, Department of Fiqh and Usul, Academy of Islamic Studies, University of Malaya, 50603 Kuala Lumpur, Federal Territory, Malaysia

3Institute of Mathematical Sciences, University of Malaya, 50603 Kuala Lumpur, Federal Territory, Malaysia

 Diserahkan: 22 Oktober 2019/Diterima: 13 Januari 2020

 

ABSTRACT

Many astronomers have studied lunar crescent visibility throughout history. Its importance is unquestionable, especially in determining the local Islamic calendar and the dates of important Islamic events. Different criteria have been used to predict the possible visibility of the crescent moon during the sighting process. However, so far, the visibility models used are based on linear statistical theory, whereas the useful variables in this study are in the circular unit. Hence, in this paper, we propose new visibility tests using the circular regression model, which will split the data into three visibility categories; visible to the unaided eye, may need optical aid and not visible. We formulate the procedure to separate the categories using the residuals of the fitted circular regression model. We apply the model on 254 observations collected at Baitul Hilal Teluk Kemang Malaysia, starting from March 2000 to date. We show that the visibility test developed based on elongation of the moon (dependent variable) and altitude of the moon (independent variable) gives the smallest misclassification rate. From the statistical analysis, we propose the elongation of the moon 7.28°, altitude of the moon of 3.33° and arc of vision of 3.74° at sunset as the new crescent visibility criteria. The new criteria have a significant impact on improving the chance of observing the crescent moon and in producing a more accurate Islamic calendar in Malaysia.

 

Keywords: Circular regression; crescent moon; lunar month; q-test; visibility criteria


ABSTRAK
Ramai ahli astronomi telah mengkaji kebolehnampakan bulan sabit sepanjang sejarah. Kepentingannya tidak dapat dipertikaikan, terutama dalam menentukan kalendar Islam tempatan dan tarikh peristiwa penting Islam. Kriteria yang berbeza telah digunakan untuk meramalkan kemungkinan kebolehnampakan bulan sabit semasa proses pencerapan. Walau bagaimanapun, setakat ini, model kebolehnampakan yang digunakan adalah berdasarkan teori statistik linear, sedangkan pemboleh ubah penting dalam kajian ini adalah dalam sukatan membulat. Oleh itu, dalam kertas ini, kami mencadangkan ujian kebolehnampakan baru menggunakan model regresi berkeliling, yang akan membahagikan data menjadi tiga kategori kebolehnampakan; dapat dilihat dengan mata kasar, mungkin memerlukan bantuan optik dan tidak kelihatan. Kami memformulasi prosedur tersebut untuk memisahkan kategori menggunakan sisa model regresi berkeliling yang sesuai. Kami mengaplikasikan model tersebut dalam 254 pemerhatian yang dikumpulkan di Baitul Hilal Teluk Kemang Malaysia, bermula dari Mac 2000 sehingga kini. Kami menunjukkan bahawa ujian kebolehnampakan dibangunkan berdasarkan pemanjangan bulan (pemboleh ubah bersandar) dan ketinggian bulan (pemboleh ubah bebas) memberikan kadar salah pengkelasan terkecil. Daripada analisis statistik, kami mencadangkan pemanjangan bulan pada 7.28°, ketinggian bulan 3.33° dan aras penglihatan 3.74° ketika matahari terbenam sebagai kriteria baharu kebolehnampakan bulan sabit. Kriteria baharu ini memberi kesan yang besar dalam meningkatkan peluang melihat bulan sabit dan menghasilkan kalendar Islam yang lebih tepat di Malaysia.


Kata kunci:
Bulan lunar; bulan sabit; kriteria kebolehnampakan; regresi berkeliling; ujian q

 

RUJUKAN

Alkasadi, N.A., Ali, H.M., Abuzaid, Safwati Ibrahim, Mohd Irwan Yusoff, 2018. Outliers detection in multiple circular regression model via DFBETAc statistic. International Journal of Applied Engineering 3(11): 9083-9090.

Alrefay, T., Alsaab, S., Alshehri, F., Hadadi, A., Alotaibi, M., Almutari, K. & Mubarki, Y. 2018. Analysis of observations of earliest visibility of the lunar crescent. The Observatory 138: 267-291.

Best, D.J. & Fisher, N.I. 1981. The bias of the maximum likelihood estimators of the von Mises-Fisher concentration parameters. Communication in Statistics - Simulations and Computations 10(5): 394-502.

Bruin, F. 1977. The first visibility of the lunar crescent. Vistas in Astronomy 21(4): 331-358.

Danjon, A. 1936. Ann. L’Obs. Strasbourg 3: 139-181.

Fatoohi, L.J., Stephenson, F.R. & Al-Dargazelli, S.S. 1998. The Danjon limit of first visibility of the lunar crescent. The Observatory: A Review of Astronomy 118: 65-72.

Fisher, N.I. 1993. Statistical Analysis of Circular Data. London: Cambridge University Press.

Fotheringham, J.K. 1910. On the smallest visible phase of the moon. Monthly Notices of the Royal Astronomical Society 70: 527-531.

Guessoum, N. & Meziane, K. 2001. Visibility of the thin lunar crescent: The sociology of an astronomical problem (A case study). Journal of Astronomical History & Heritage 4: 1-14

Hasanzadeh, A. 2012. Study of Danjon limit in moon crescent sighting. Astrophysics and Space Science 339: 211-221.

Hoffman, R.R. 2003. Observing the new moon. Mon. Not. R. Astron. Soc. 340: 1039-1051.

Hogendijk, J.P. 1988. New light on the lunar visibility table of Yaʿqub ibn Tariq. Journal of Near Eastern Studies 47: 95-104.

Hussin, A.G., Fieller, N.R.J. & Stillman, E.C. 2004. Linear regression for circular variables with application to directional data. Journal of Applied Science and Technology 8: 1-6.

Ilyas Mohammad. 1994. Lunar crescent visibility criterion and Islamic calendar. Quarterly Journal of the Royal Astronomical Society 35: 425-461.

Ilyas Mohammad. 1988. Limiting altitude separation in the new moons 1st visibility criterion. Astronomy & Astrophysics 206: 133-135.

Ilyas Mohammad. 1983. The Danjon limit of lunar visibility: A re-examination. The Journal of the Royal Astronomical Society of Canada 77: 214-219.

Jammalamadaka, S.R. & SenGupta, A. 2001. Topics in Circular Statistics. London: World Scientific.

Jammalamadaka, S.R. & Sarma, Y.R. 1993. Circular regression. In Statistical Sciences and Data Analysis, edited by Matusita, K. Utrecht, Netherlands: VSP. pp. 109-128.

Kim, S. & Rifat, M.M.I. 2019. Diagnostic analysis of a circular-circular regression model using asymmetric or asymmetric bi-modal circular errors. Communications in Statistics-Theory and Methods. DOI: 10.1080/03610926.2019.1676448.

Mardia, K.V. & Jupp, P.E. 1972. Directional Statistics. London: John Wiley and Sons.

Maunder, E.W. 1911. On the smallest visible phase of the moon. The Journal of the British Astronomical Association 21: 355-362.

McNally, D. 1983. The length of the lunar crescent. Quarterly Journal of the Royal Astronomical Society 24: 417-429.