Sains Malaysiana 50(10)(2021): 3003-3014

http://doi.org/10.17576/jsm-2021-5010-14

 

Hydrogenated Liquid Natural Rubber for Compatibility Enhancement of Poly(lactic acid) and Natural Rubber Blends

(Getah Asli Cecair Terhidrogenasi untuk Peningkatan Keserasian Campuran Poli(asid laktik) dan Getah Asli)

 

MOHAMAD SHAHRUL FIZREE IDRIS1, NURFARHANA MOHD MUSTAFFARIZAN1& SITI FAIRUS M. YUSOFF1,2*

 

1Department of Chemical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

2Polymer Research Center (PORCE), Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

Received: 12 November 2020/Accepted: 23 February 2021

 

ABSTRACT

Non-catalytic hydrogenation of liquid natural rubber (LNR) via thermal decomposition of 2,4,6-trimethylbenzenesulfonylhydrazide (MSH) is reported in this study. Parameter studies of the hydrogenation reaction were performed by utilizing the combination of response surface methodology and central composite rotatable design (RSM/CCRD). The effects of each variable and the interaction between two variables (i.e. the MSH:LNR weight ratio and reaction time) were studied. Statistical analysis showed that the reaction time had significantly affected the hydrogenation percentage. A reduced quadratic model equation with the coefficient of determination (R2) value of 0.9875 was developed. The optimized condition as predicted by the software was compared with the experimental data, which deviated in only 0.67, hence indicating that this model was reliable and able to predict the hydrogenation percentage accurately. Fourier-transform infrared (FTIR) and nuclear magnetic resonance (NMR) spectroscopies were used to characterize the microstructure of LNR and hydrogenated liquid natural rubber (HLNR). HLNR was then used as compatibilizer to improve the miscibility of poly(lactic acid)/natural rubber blends. With an addition of 4% HLNR, the tensile strength and impact strength of the blends were slightly improved.

 

Keywords: Hydrogenation; liquid natural rubber (LNR); surface optimization; 2,4,6-trimethylbenzenesulfonylhydrazide (MSH)

 

ABSTRAK

Penghidrogenan tanpa mangkin getah asli cair (LNR) melalui penguraian terma 2,4,6-trimetilbenzenasulfonilhidrazida (MSH) dilaporkan dalam kajian ini. Kajian parameter tindak balas penghidrogenan dilakukan dengan menggunakan gabungan kaedah rangsangan permukaan dan reka bentuk komposit putaran tengah (RSM/CCRD). Kesan setiap pemboleh ubah dan interaksi antara dua pemboleh ubah (iaitu nisbah berat MSH: LNR dan masa tindak balas) dikaji. Analisis statistik menunjukkan bahawa masa tindak balas telah mempengaruhi peratusan penghidrogenan secara signifikan. Persamaan model kuadratik dengan nilai pekali penentuan (R2) 0.9875 diperoleh. Keadaan yang dioptimumkan seperti yang diramalkan oleh perisian dibandingkan dengan data uji kaji, yang menyimpang hanya 0.67, sehingga menunjukkan bahawa model ini boleh dipercayai dan dapat meramalkan peratusan penghidrogenan dengan tepat. Spektroskopi inframerah transformasi Fourier (FTIR) dan resonans magnetik nuklear (NMR) digunakan untuk mencirikan struktur mikro LNR dan getah asli cecair terhidrogen (HLNR). HLNR kemudian digunakan sebagai pengserasi untuk meningkatkan keserasian campuran poli(asid laktik)/getah asli. Dengan penambahan HLNR 4%, kekuatan tegangan dan kekuatan hentaman campuran telah meningkat sedikit.

 

Kata kunci: Getah cecair asli (LNR); penghidrogenan; pengoptimuman permukaan; 2,4,6- trimetilbenzenasulfonilhidrazida (MSH)


RUJUKAN

 

Abdullah, I. 1996. Process for Manufacturing Liquid Natural Rubber (LNR). Malaysian Patent MY-108852-A.

Ayutthaya, W.D.N. & Poompradub, S. 2014. Thermal and mechanical properties of poly (lactic acid)/natural rubber blend using epoxidized natural rubber and poly (methyl methacrylate) as co-compatibilizers. Macromolecular Research 22(7): 686-692.

Azhar, N.H.A., Md Rasid, H. & Yusoff, S.F.M. 2017. Epoxidation and hydroxylation of liquid natural rubber. Sains Malaysiana46(3): 485-491.

Azhar, N.H.A., Jamaluddin, N., Md Rasid, H., Yusof, M.J.M. & Yusoff, S.F.M. 2015. Studies on hydrogenation of liquid natural rubber using diimide. International Journal of Polymer Science2015: Article ID. 243038.

Bezerra, M.A., Santelli, R.E., Oliveira, E.P., Villar, L.S. & Escaleira, L.A. 2008. Response surface methodology (RSM) as a tool for optimization in analytical chemistry. Talanta 76(5): 965-977.

Cusack, N.J., Reese, C.B., Risius, A.C. & Roozepeikar, B. 1976. 2, 4, 6-Tri-isopropylbenzenesulphonyl hydrazide: A convenient source of di-imide. Tetrahedron 32(17): 2157-2162.

Friedrich, K. & Breuer, U. 2015. Multifunctionality of Polymer Composites: Challenges and New Solutions. William Andrew.

García-Gómez, C., Drogui, P., Zaviska, F., Seyhi, B., Gortáres-Moroyoqui, P., Buelna, G., Neira-Sáenz, C., Estrada-alvarado, M. & Ulloa-Mercado, R.G. 2014. Experimental design methodology     applied to electrochemical oxidation of carbamazepine using Ti/PbO2 and Ti/BDD electrodes. Journal of Electroanalytical Chemistry 732: 1-10.

Gunawan, E.R., Basri, M., Rahman, M.B.A., Salleh, A.B. & Rahman, R.N.Z.A. 2005. Study on response surface methodology (RSM) of lipase-catalyzed synthesis of palm-based wax ester. Enzyme and Microbial Technology 37(7): 739-744.

Hamzah, R., Bakar, M.A., Khairuddean, M., Mohammed, I.A. & Adnan, R. 2012. A structural study of epoxidized natural rubber (ENR-50) and its cyclic dithiocarbonate derivative using NMR spectroscopy techniques. Molecules 17(9): 10974-10993.

Hamzaoui, A., Jamoussi, B. & M'nif, A. 2008. Lithium recovery from highly concentrated solutions: Response surface methodology (RSM) process parameters optimization. Hydrometallurgy 90(1): 1-7.

Hong, B.K. & Jo, W.H. 2000. Effects of molecular weight of SEBS triblock copolymer on the morphology, impact strength, and rheological property of syndiotactic polystyrene/ethylene–propylene rubber blends. Polymer 41(6): 2069-2079.

Idris, M.S.F., Wan Mokhtar, W.N.A. & Yusoff, S.F.M. 2019. New approach on the    modification of liquid natural rubber production using microwave technique. Sains Malaysiana48(7): 1433-1438.

Jamaluddin, N., Yusof, M.J.M., Abdullah, I. & Yusoff, S.F.M. 2016. Synthesis, characterization, and properties of hydrogenated liquid natural rubber. Rubber Chemistry and Technology 89(2): 227-239.

Jose, S., Parameswaranpillai, J., Francis, B., Aprem, A.S. & Thomas, S. 2016. Thermal degradation and crystallization characteristics of multiphase polymer systems with and without compatibilizer. Aims Materials Science 3(3): 1177- 1198.

Kawahara, S., Kawazura, T., Sawada, T. & Isono, Y. 2003. Preparation and characterization of natural rubber dispersed in nano-matrix. Polymer 44(16): 4527-4531.

Kongparakul, S., Ng, F.T. & Rempel, G.L. 2011. Metathesis hydrogenation of natural rubber latex. Applied Catalysis A: General 405(1-2): 129-136.

Mahittikul, A., Prasassarakich, P. & Rempel, G.L. 2007. Noncatalytic hydrogenation of natural rubber latex. Journal of Applied Polymer Science 103(5): 2885-2895.    

Miller, C.E. 1965. Hydrogenation with diimide. Journal of Chemical Education 42(5): 254.

Mohamad, N., Yaakub, J., Abd Razak, J., Yaakob, M.Y., Shueb, M.I. & Muchtar, A. 2014. Effects of epoxidized natural rubber (ENR‐50) and processing parameters on the properties of NR/EPDM blends using response surface methodology. Journal of Applied Polymer Science 131(17): 40713.

Nor, H.M. & Ebdon, J.R. 1998. Telechelic liquid natural rubber: A review. Progress in Polymer Science 23(2): 143-177.

Radhakrishnan Nair, M.N., Biju, P.K., Thomas, G.V. & Gopinathan Nair, M.R. 2009. Blends of PVC and epoxidized liquid natural rubber: Studies on impact modification. Journal of Applied Polymer Science 111(1): 48-56.

Rasid, H.M., Azhar, N.H.A., Jamaluddin, N. & Yusoff, S.F.M. 2016. Mild approach for non‐catalytic hydrogenation of liquid natural rubber using 2, 4, 6‐trimethylbenzenesulfonyl hydrazide as the diimide source. Bulletin of the Korean Chemical Society 37(6): 797-801.

Razak, J.A., Ahmad, S.H., Ratnam, C.T., Mahamood, M.A., Yaakub, J. & Mohamad, N. 2015. Effects of EPDM‐g‐MAH compatibilizer and internal mixer processing parameters on the properties of NR/EPDM blends: An analysis using response surface methodology. Journal of Applied Polymer Science 132(27): 42199.

Rosli, N.A., Ahmad, I., Anuar, F.H. & Abdullah, I. 2016. Mechanical and thermal properties of natural rubber-modified poly (lactic acid) compatibilized with telechelic liquid natural rubber. Polymer Testing 54: 196-202.

Sen, S., Mabuni, C. & Walsh, D. 2001. Development of a methodology for characterizing commercial chlorinated latex gloves. Journal of Applied Polymer Science 82(3): 672-682.

Zhong, J.P., Li, S.D., Wei, Y.C., Peng, Z. & Yu, H.P. 1999. Study on preparation of chlorinated natural rubber from latex and its thermal stability. Journal of Applied Polymer Science 73(14): 2863-2867.

Zolali, A.M. & Favis, B.D. 2017. Compatibilization and toughening of co-continuous ternary blends via partially wet droplets at the interface. Polymer 114: 277-288.

 

*Pengarang untuk surat-menyurat; email: sitifairus@ukm.edu.my

 

 

     

 

sebelumnya