Malaysian Journal of Analytical Sciences Vol 21 No 1 (2017): 159 - 165

DOI: http://dx.doi.org/10.17576/mjas-2017-2101-18

 

 

 

CHARACTERIZATION OF ACTIVATED CARBON USING CHEMICAL ACTIVATION VIA MICROWAVE ULTRASONIC SYSTEM

 

(Pencirian Karbon Teraktif Menggunakan Sistem Pengaktifan Kimia Melalui Ketuhar Gelombang Ultrasonik)

 

Norakmalah Mohd Zawawi1, Fazlena Hamzah1*, Mahanim Sarif2, Shareena Fairuz Abdul Manaf1, Ani Idris3

 

1Biocatalysis & Biobased Material Research Group, Green Technology and Sustainable Development Research Community, Faculty of Chemical Engineering,

Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia

2Wood Chemistry and Protection Program, Forest Product Division,

Forest Research Institute Malaysia (FRIM),52109 Kepong, Malaysia

3Faculty of Chemical Engineering,

Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia

 

*Corresponding author: fazlena@salam.uitm.edu.my

 

 

Received: 21 October 2015; Accepted: 14 June 2016

 

 

Abstract

Higher adsorption capacities of activated carbon (AC) can be evaluate according to pore volume, porosity and surface area. AC with higher pore volume, porosity and surface area desired in the present study in order to enhance the properties of AC supercapacitor. Thus, the present studies focus on the chemical activation process to increase the characterization of AC. The study was using bamboo waste as a precursor and the activation process was conducted using microwave ultrasonic system. The chemical agent used during the process was KOH and H2SO4. Microwave activation was conducted at intensity 100 W and 300 W for 30 min and sonication frequency was constantly set at 200 Hz for 60 min. The sample was carbonized at temperature of 400 ºC and 800 ºC using furnace for 2 hours. Then, AC was characterized for surface area using BET analysis and functioning group using FTIR analysis. The results shown the carboxyl, aliphatic, aromatic and phenolic hydroxyl group are present on raw bamboo while new functional group such as alkyl halide and some of some weak bands appeared which analogous with out of plane bending mode of the C-H or O-H group occur for AC. Active surface area and total pore volume of AC supercapacitor in 5M of concentration for H2SO4 and KOH corresponded to 1167 m2/g, 0.724 cm3/g, 740.10 m2/g, 0.462 cm3/g, respectively.

 

Keywords:  supercapacitor, microwave-ultrasonic, activation, chemical, carbonization

 

Abstrak

Kapasiti penjerapan yang tinggi pada karbon teraktif boleh dinilai mengikut isipadu liang, keliangan dan luas permukaan. Keaktifan karbon dengan isi padu liang yang tinggi, tahap keliangan yang besar dan luas permukaan yang tinggi amat dikehendaki di dalam kajian ini bagi meningkatkan sifat-sifat keaktifan karbon superkapasitor. Oleh itu, kajian ini memberi tumpuan kepada proses pengaktifan kimia untuk meningkatkan pencirian yang diperlukan dalam karbon aktif. Kajian ini telah menggunakan sisa buluh sebagai pelopor dan proses pengaktifan telah dijalankan menggunakan sistem ultrasonik-gelombang mikro. Agen kimia yang digunakan semasa proses pengaktifan adalah KOH dan H2SO4. Pengaktifan gelombang ketuhar telah digunakan pada intensiti 100 W dan 300 W selama 30 min dan kekerapan sonikasi telah ditetapkan pada 200 Hz selama 60 min. Sampel telah dikarbonisasi pada suhu 400 ºC dan 800 ºC mengunakan relau selama 2 jam. Kemudian, karbon aktif dikelaskan bagi mendapatkan luas permukaan dengan menggunakan analisis BET dan kumpulan berfungsi pula menggunakan analisis FTIR. Keputusan menunjukkan karboksil aliphatik, aromatik dan kumpulan fenolik hidrosil hadir pada bahan asas buluh manakala kumpulan berfungsi baharu seperti alkil halida dan beberapa kumpulan yang lemah muncul dimana serupa dengan lenturan mod bagi C-H atau O-H yang terhasil pada karbon aktif. Kawasan permukaan yang aktif dan jumlah isipadu liang karbon aktif superkasitor pada kepekatan 5M untuk H2SO4 and KOH sepadan mengikut aturan 1167 m2/g, 0.724 cm3/g, 740.10 m2/g, 0.462 cm3/g. 

 

Kata kunci:  superkapasitor, gelombang mikro-ultrasonik, pengaktifan, bahan kimia, karbonisasi

 

References

1.       Chen, D., Zhou, J. and Zhang, Q. (2014). Effects of heating rate on slow pyrolysis behavior, kinetic parameters and products properties of moso bamboo. Bioresource Technology, 169 (9): 313 – 319.

2.       Liu, Q.-S., Zheng, T., Wang, P. and Guo, L. (2010). Preparation and characterization of activated carbon from bamboo by microwave-induced phosphoric acid activation. Industrial Crops and Products, 31(2): 233 – 238.

3.       Wang, R., Amano, Y. and Machida, M. (2013). Surface properties and water vapor adsorption–desorption characteristics of bamboo-based activated carbon. Journal of Analytical and Applied Pyrolysis, 104: 667 – 674.

4.       Lee, Y. J., Kim, G.-P., Bang, Y., Yi, J., Seo, J. G. and Song, I. K. (2014). Activated carbon aerogel containing graphene as electrode material for supercapacitor. Materials Research Bulletin, 50: 240 –245.

5.       Iqbaldin, M. N. M., Khudzir, I., Azlan, M. I. M., Zaidi, A. G., Surani, B. and Zubri, Z. (2013). Properties of Coconut Shell Activated Carbon. Journal of Tropical Forest Science, 25 (4): 497 – 503.

6.       Dabrowski, A., Podkościelny, P., Hubicki, Z. and Barczak, M. (2005). Adsorption of phenolic compounds by activated carbon- a critical review. Chemosphere, 58 (8) :1049 – 1070.

7.       Gonzalez, P. G. and Pliego-Cuervo, Y. B. (2013). Physicochemical and microtextural characterization of activated carbons produced from water steam activation of three bamboo species. Journal of Analytical and Applied Pyrolysis, 99: 32 – 39.

8.       Foo, K.Y. and Hameed, B. H. (2012) Adsorption characteristics of industrial solid waste derived activated carbon prepared by microwave heating for methylene blue. Fuel Processing Technology, 99 –103.

9.       Foo, K. Y. and Hameed, B. H. (2012). Coconut husk derived activated carbon via microwave induced activation: effects of activation agents, preparation parameters, and adsorption performance. Chemical Engineering Journal, 184: 57 – 65.

10.    Foo, K. Y. and Hameed, B. H. (2012). Porous structure and adsorptive properties of pineapple based activated carbons prepared via microwave assisted KOH and K2CO3 activation. Microporous and Mesoporous Materials, 148: 191 – 195.

11.    Ahmed, M. J. and Theydan, S. K. (2013). Microporous activated carbon from Siris seed pods by microwave-induced KOH activation for metronidazole adsorption. Journal of Analytical and Applied Pyrolysis, 99: 101 – 109.

12.    Koplan, S., Okun, D. T., Hillman, J. A., Lane, C. R., Pearson, D. R. and Aranoff, S. L. (2006). Certain activated carbon from China. U.S International Trade Commission. Washington.

13.    Ma, X., Yang, H., Yu, L., Chen, Y. and Li, Y. (2014). Preparation, surface and pore structure of high surface area activated carbon fibers from bamboo by steam activation. Materials, 7(6): 4431 – 4441.

14.    Paiva, M. C. R., Bernardo, C. A. and Nardin, M. (2000). Mechanical, surface and interfacial characteristic of pitch and PAN-carbon fibres. Carbon, 38: 1323 – 1327.

15.    Wang, T. H., Tan, S. X. and Liang, C. H. (2009). Preparation and characterization of activated carbon from wood via microwave-induced ZnCl2 activation. Carbon, 47: 1880 – 1883.

16.    Deng, H., Li, G., Yang, H., Tang, J. and Tang, J. (2010). Preparation of activated carbons from cotton stalk by microwave assisted KOH and K2CO3 activation. Chemical Engineering Journal, 163 (3): 373 – 381.

17.    Ahmad, A. A. and Hameed, B. H. (2009). Reduction of COD and color of dyeing effluent from a cotton textile mill by adsorption onto bamboo-based activated carbon. Journal of Hazardous Materials, 172 (2-3): 1538 – 1543.

18.    Ahmad, M. A., Ahmad Puad, N. A. and Bello, O. S. (2014). Kinetic, equilibrium and thermodynamic studies of synthetic dye removal using pomegranate peel activated carbon prepared by microwave-induced KOH activation. Water Resources and Industry, 6: 18 – 35.

19.    Nazri, I., Ahmad, Z. A., Ahmad, M. A., Ahmad, N. and Sulaiman, S. K. (2010). Optimization of process variables for malachite green dye removal using rubber seed coat based activated carbon. International Journal of Engineering and Technology, 11: 305 – 311.

20.    Sun, Y. and Webley, P. A. (2010). Preparation of activated carbons from corncob with large specific surface area by a variety of chemical activators and their application in gas storage. Chemical Engineering Journal, 162: 883 – 892.

 




Previous                    Content                    Next