Malaysian Journal of Analytical Sciences Vol 21 No 1 (2017): 166 - 172

DOI: http://dx.doi.org/10.17576/mjas-2017-2101-19

 

 

 

CeO2-TiO2 FOR PHOTOREDUCTION OF CO2 TO METHANOL UNDER VISIBLE LIGHT: EFFECT OF CERIA LOADING

 

(CeO2-TiO2 untuk Penurunan CO2 kepada Metanol di bawah Radiasi Cahaya Nampak:Kesan Pemuatan Ceria)

 

Hamidah Abdullah1,2*, Nur Aminatulmimi Ismail1, Zahira Yaakob2, Maksudur R. Khan1,

Syarifah Abd Rahim1

 

1Faculty of Chemical and Natural Resources Engineering,

Universiti Malaysia Pahang, 26300, Kuantan, Pahang, Malaysia

2 Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment,

Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

 

*Corresponding author: hamidah@ump.edu.my

 

 

Received: 21 October 2015; Accepted: 14 June 2016

 

 

Abstract

A visible light-driven photocatalyst, CeO2-TiO2 catalyst with different ceria loading was synthesized by impregnation method between TiO2 powder and cerium oxide nanoparticles slurry. The prepared catalyst samples were characterized by X-ray diffraction (XRD), surface area analysis, UV-vis absorption spectroscopy and photoluminescence spectroscopy (PL). The band gap of CeO2-TiO2 catalyst was found to be 2.15 – 2.4 eV. The band gap reduction clearly indicated the successful loading of CeO2 on TiO2. The photocatalytic activity was determined by measuring the photoreduction of CO2 to methanol in aqueous solution under visible light. The effect of cerium loading in the range of 1 to 5 wt% on the photocatalytic activity was studied and 2 wt% CeO2-TiO2 was found to exhibit the maximum photoactivity of 18.6 µmol/g.catalyst after 6 hours irradiation. Results showed that the prepared photocatalyst is visible light active and may be used as effective catalyst in photoreduction of CO2 to methanol.

 

Keywords:  metal oxide, photocatalyst, band gap, nanoparticles

 

Abstrak

Fotomangkin yang boleh diaplikasi di bawah radiasi cahaya nampak iaitu mangkin CeO2-TiO2 yang berbeza muatan ceria telah disintesis dengan kaedah impregnasi serbuk titanium dioksida dengan mendakan partikel nano cerium dioksida.  Ciri mangkin yang dihasilkan dikaji dengan menggunakan pembelauan sinar-X (XRD), analisis luas permukaan, UV-Vis spektrofotometer dan spektroskopi fotoluminesen (PL). Jurang tenaga mangkin CeO2-TiO2 adalah di antara 2.15 eV hingga 2.4 eV. Pengurangan jurang tenaga jelas menunjukkan  pemuatan CeO2 ke atas TiO2 telah berjaya. Aktiviti fotopemangkinan ditentukan melalui tindak balas penurunan gas karbon dioksida (CO2) di dalam larutan akueus kepada metanol dan dijalankan di bawah radiasi cahaya nampak.  Kesan pemuatan 1 hingga 5 peratus berat cerium ke atas TiO2 terhadap aktiviti fotopemangkinan  telah dikaji dan CeO2-TiO2 dengan 2 peratus berat cerium didapati menunjukkan fotosensitiviti maksimum iaitu penghasilan 18.6 µmol/g.mangkin selepas 6 jam radiasi. Hasil kajian menunjukkan bahawa fotomangkin yang dihasilkan adalah aktif di bawah cahaya nampak dan dijangka efektif untuk penurunan CO2 kepada metanol.

 

Kata kunci:  logam oksida, fotomangkin, jurang tenaga, partikel nano

 

References

1.       Corma,  A., and  Garcia, H.  (2013).   Photocatalytic  reduction  of  CO2 for  fuel  production:  Possibilities and challenges. Journal of Catalysis, 308: 168 – 175.

2.       Zhang,  Y.,  Zhang,  H.,  Xu, Y., and  Wang, Y. (2003).   Europium  doped  nanocrystalline  titanium  dioxide: preparation, phase transformation and photocatalytic properties. Journal of Materials Chemistry, 13:  2261.

3.       Parida,  K. M. and  Sahu,  N. (2008).  Visible light  induced  photocatalytic  activity  of  rare  earth titania nano-composites. Journal of Molecular Catalysis A: Chemistry: 287: 151 – 158.

4.       Shi, H., Zhang, T., An, T., Li, B. and Wang, X. (2012).  Enhancement  of photocatalytic activity of nano-scale TiO2 particles co-doped by rare earth elements and heteropolyacids. Journal of Colloid Interface Science, 380: 121 – 127.

5.       Aman,  N.,  Satapathy  P. K., Mishra, T.,  Mahato,  M., and  Das,  N. N. (2012).  Synthesis  and  photocatalytic activity of mesoporous cerium doped TiO2 as visible light sensitive photocatalyst. Materials Research Bulletin, 47: 179 – 183.

6.       Matejova, L., Koci, K., Reli, M., Capek, L., Hospodkova, A., Peikertova, P., Matej, Z., Obalova, L., Wach, A., Kustrowski, P. and  Kotarba, A. (2014).  Preparation,  characterization and photocatalytic properties of cerium doped TiO2: On the effect of Ce loading on the photocatalytic reduction of carbon dioxide. Applied Catalysis B: Environmental, 152: 172 – 183.

7.       Xiong,  Z., Zhao, Y.,  Zhang,  J. and  Zheng, C. (2014).  Efficient  photocatalytic  reduction of  CO2  into  liquid products  over  cerium   doped   titania  nanoparticles   synthesized  by  a  sol–gel   auto-ignited  method.  Fuel Processing Technology, 135: 6 – 13.

8.       Abdullah, H., Khan, M. R., Pudukudy, M., Yaakob, Z. and Ismail, N. M. (2015).  CeO2-TiO2  as a visible light active catalyst for the photoreduction of CO2 to methanol. Journal of Rare Earths, 33: 1155 – 1161.

9.       Liu, Z., Guo, B., Hong, L. and Jiang, H. (2005).  Preparation  and characterization of cerium oxide doped TiO2 nanoparticles. Journal of Physics and Chemistry of Solids, 66: 161 – 167.

10.    Ioanna, G., Christina, F., Christos, K. and  Soghomon, B. (2006).  Molecular structure and catalytic activity of V2O5/TiO2 catalysts for the SCR of NO by NH3:  In situ  Raman  spectra in  the presence of O2, NH3, NO, H2, H2O, and SO2. Journal of Catalysis. 239: 1 – 12.

11.    Xu, A. W., Gao, Y. and Liu, H. Q. (2002). The preparation, characterization, and their photocatalytic activities of rare-earth-doped TiO2 nanoparticles. Journal of Catalysis, 207: 151 – 157.

12.    Wu,  J., Liu,  Q., Gao,  P. and  Zhu,  Z. (2011).   Influence  of  praseodymium  and  nitrogen  co-doping  on the photocatalytic activity of TiO2. Materials Research Bulletin, 46: 1997 – 2003.

13.    Tahir, M. and Amin, N. S. (2013). Advances in visible light responsive titanium oxide-based photocatalysts for CO2 conversion to hydrocarbon fuels. Energy Conversion Management, 76: 194 – 214.

14.    Inoue, T., Fujishima, A., Konishi, S. and Honda, K. (1979).   Photoelectrocatalytic reduction of carbon dioxide in aqueous suspensions of semiconductor powders. Nature, 277: 637 – 638.

 




Previous                    Content                    Next