Malaysian Journal of Analytical Sciences Vol 21 No 1 (2017): 72 - 81

DOI: http://dx.doi.org/10.17576/mjas-2017-2101-09

 

 

 

SOLIDIFIED FLOATING ORGANIC DROP MICROEXTRACTIONELECTROTHERMAL ATOMIC ABSORPTION SPECTROMETRY FOR THE DETERMINATION OF TRACE AMOUNTS OF LEAD IN WATER SAMPLES

 

(Pengekstrakan Mikro Pemejalan Titisan Organik Terapung-Spektrometri Serapan Atom Elektrotermal bagi Penentuan Jumlah Surih Plumbum di dalam Sampel Air)

 

Arnon Thongsaw, Ratana Sananmuang, Gareth M. Ross, Wipharat Chuachuad Chaiyasith*

 

Department of Chemistry,

Research Center for Academic Excellence in Petroleum, Petrochemical and Advanced Materials,

Faculty of Science,

Naresuan University, Phitsanulok, Thailand 65000

 

*Corresponding author: wipharatc@nu.ac.th

 

 

Received: 14 September 2016; Accepted: 6 December 2016

 

 

Abstract

Solidified floating organic drop microextraction (SFODME) was utilized as a separation or pre-concentration step prior to electrothermal atomic absorption spectrometric (ETAAS) determination of ultra-trace amounts of lead. The method was based on the formation of an extractable complex between Pb(II) and 1-(2-pyridylazo)-2-naphathol (PAN) as a chelating agent. The main parameters affecting the performance of SFODME, namely, type and volume of organic solvent, pH, concentration of the chelating agent, extraction time, stirring rate, extraction temperature, disperser solvent, ionic strength, and interference effect were investigated and optimized. Under optimized experimental conditions a pre-concentration factor of 22.03 and a detection limit of 0.064 μg L-1 for the pre-concentration from 13.0 mL water sample was achieved. The relative standard deviation of the measurements in the range of 1.3 – 2.5% (n = 6). The proposed method was assessed through the analysis of certified reference water and recovery experiment with satisfactory results.

 

Keywords:  solidified floating organic drop microextraction, lead, electrothermal atomic absorption spectrometry, water samples

 

Abstract

Pengekstrakan mikro pemejalan titisan organik terapung (SFODME) digunakan sebagai langkah pemisahan atau pemekatan sebelum penentuan jumlah surih plumbum ditentukan menngunakan spektrometri serapan atom elektrotermal (ETAAS). Kaedah ini berasaskan kepada pembentukkan kompleks yang boleh diekstrak di antara Pb(II) dan 1-(2p-piridilazo)-2-naphol (PAN) sebagai agen pengkelat. Parameter utama yang memberi kesan kepada prestasi SFODME iaitu jenis dan isipadu pelarut organik, pH, kepekatan agen pengkelat, masa pengekstrakan, kesan pengacauan, suhu pengesktrakan, pelarut serakan, kekuatan ionik dan kesan gangguan telah dikaji dan dioptimumkan. Keadaan optimum bagi eksperimen diperolehi dengan faktor pemekatan pada 22.03 dan had pengesanan dicapai pada 0.064 μg L-1 bagi pemekatan 13.0 mL sampel air. Pengukuran sisihan piawai relatif berada pada julat 1.3 – 2.5% (n = 6). Kaedah yang dicadangkan juga dinilai melalui analisis sampel air rujukan yang disahkan dan ujian perolehan semula yang mencapai keputusan memuaskan.       

 

Kata kunci: pengekstrakan mikro pemejalan titisan organik terapung, plumbum, spektrometri serapan atom elektrotermal, sampel air

 

References

1.       Yurtsever, M. and Şengil, İ. A. (2009). Biosorption of Pb(II) ions by modified quebracho tannin resin. Journal of Hazardous Materials, 163: 58 – 64.

2.       Afridi, H. I., Kazi, T. G., Kazi, G. H., Jamali, M. K. and Shar, G. Q. (2006). Essential trace and toxic element distribution in the scalp hair of Pakistani myocardial infarction patients and controls. Biological Trace Element Research, 113: 19 – 34.

3.       Jusko, T. A., Henderson Jr, C. R., Lanphear, B. P., Cory-Slechta, D. A., Parsons, P. J. and Canfield, R. L. (2008). Blood lead concentrations < 10µg/dL and child intelligence at 6 years of age. Environmental Health Perspectives,116: 243 – 248.

4.       Drinking water contaminants: Standards and Regulations, EPA (2016). Access online from http://water.epa.gov/drink/contaminants /index.cfm). Accessed date 06.09.16.

5.       Jitaru, P. and Adams, F. C. (2004). Speciation analysis of mercury by solid-phase microextraction and multi-capillary gas chromatography hyphenated to inductively coupled plasma–time-of-flight-mass spectrometry. Journal of Chromatography A, 1055: 197 – 207.

6.       Oleszczuk, N., Castro, J. T., da Silva, M. M., Maria das Graças, A. K., Welz, B., and Vale, M. G. R. (2007). Method development for the determination of manganese, cobalt and copper in green coffee comparing direct solid sampling electrothermal atomic absorption spectrometry and inductively coupled plasma optical emission spectrometry. Talanta, 73: 862 – 869.

7.       Mierzwa, J., Sun, Y. C., and Yang, M. H. (1997). Determination of Co and Ni in soils and river sediments by electrothermal atomic absorption spectrometry with slurry sampling. Analytica Chimica Acta, 355: 277 – 282.

8.       Wang, J. and Hansen, E. H. (2002). FI/SI on-line solvent extraction/back extraction pre-concentration coupled to direct injection nebulization inductively coupled plasma mass spectrometry for determination of copper and lead. Journal of Analytical Atomic Spectrometry, 17: 1284 – 1289.

9.       Ndung’u, K., Franks, R. P., Bruland, K. W., and Flegal, A. R. (2003). Organic complexation and total dissolved trace metal analysis in estuarine waters: comparison of solvent-extraction graphite furnace atomic absorption spectrometric and chelating resin flow injection inductively coupled plasma-mass spectrometric analysis. Analytica Chimica Acta, 481: 127 – 138.

10.    Ghaedi, M., Montazerozohori, M. and Soylak, M. (2007). Solid phase extraction method for selective determination of Pb(II) in water samples using 4-(4-methoxybenzylidenimine) thiophenole. Journal of Hazardous Materials, 142: 368 – 373.

11.    Dadfarnia, S., Talebi, M., Shabani, A. M. H. and Beni, Z. (2007). Determination of lead and cadmium in different samples by flow injection atomic absorption spectrometry incorporating a microcolumn of immobilized ammonium pyrrolidine dithiocarbamate on microcrystalline naphthalene. Croatian Chemica Acta, 80: 17 – 23.

12.    Alonso, E. V., Cordero, M. S., De Torres, A. G. and Pavón, J. C. (2006). Lead ultra-trace on-line preconcentration and determination using selective solid phase extraction and electrothermal atomic absorption spectrometry: applications in seawaters and biological samples. Analytical and Bioanalytical Chemistry, 385: 1178 – 1185.

13.    Peker, D. S. K., Turkoglu, O. and Soylak, M. (2007). Dysprosium (III) hydroxide coprecipitation system for the separation and preconcentration of heavy metal contents of table salts and natural waters. Journal of Hazardous Materials, 143: 555 – 560.

14.    Luconi, M. O., Silva, M. F., Olsina, R. A. and Fernández, L. P. (2000). Cloud point extraction of lead in saliva via use of nonionic PONPE 7.5 without added chelating agents. Talanta, 51: 123 – 129.

15.    Chen, J., Xiao, S., Wu, X., Fang, K., and Liu, W. (2005). Determination of lead in water samples by graphite furnace atomic absorption spectrometry after cloud point extraction. Talanta, 67: 992 – 996.

16.    Purohit, R., and Devi, S. (1992). Determination of trace amounts of lead by chelating ion exchange and on-line preconcentration in flow-injection atomic absorption spectrometry. Analytica Chimica Acta, 259: 53 – 60.

17.    Liang, P., Liu, R. and Cao, J. (2008). Single drop microextraction combined with graphite furnace atomic absorption spectrometry for determination of lead in biological samples. Microchimica Acta, 160: 135 – 139.

18.    Rasmussen, K. E. and Pedersen-Bjergaard, S. (2004). Developments in hollow fibre-based, liquid-phase microextraction. TrAC Trends in Analytical Chemistry, 23: 1 – 10.

19.    Farajzadeh, M. A., Bahram, M., Zorita, S., and Mehr, B. G. (2009). Optimization and application of homogeneous liquid–liquid extraction in preconcentration of copper (II) in a ternary solvent system. Journal of Hazardous Materials, 161: 1535 - 1543.

20.    Kozani, R. R., Assadi, Y., Shemirani, F., Hosseini, M. R. M., and Jamali, M. R. (2007). Part-per-trillion determination of chlorobenzenes in water using dispersive liquid–liquid microextraction combined gas chromatography–electron capture detection. Talanta, 72: 387 – 393.

21.    Jain, R. and Singh, R. (2016). Applications of dispersive liquid–liquid micro-extraction in forensic toxicology. TrAC Trends in Analytical Chemistry, 75: 227 – 237.

22.    Zanjani, M. R. K., Yamini, Y., Shariati, S. and Jönsson, J. Å. (2007). A new liquid-phase microextraction method based on solidification of floating organic drop. Analytica Chimica Acta, 585: 286 – 293.

23.    Dadfarnia, S. and Shabani, A. M. H. (2010). Recent development in liquid phase microextraction for determination of trace level concentration of metals – A review. Analytica Chimica Acta, 658: 107 – 119.

24.    Zhu, X., Zhu, X. and Wang, B. (2006). Determination of trace cadmium in water samples by graphite furnace atomic absorption spectrometry after cloud point extraction. Microchimica Acta, 154: 95 – 100.

25.    Moghadam, M. R., Dadfarnia, S. and Shabani, A. M. H. (2011). Speciation and determination of ultra-trace amounts of chromium by solidified floating organic drop microextraction (SFODME) and graphite furnace atomic absorption spectrometry. Journal of Hazardous Materials, 186: 169 – 174.

26.    Chen, J., Xiao, S., Wu, X., Fang, K. and Liu, W. (2005). Determination of lead in water samples by graphite furnace atomic absorption spectrometry after cloud point extraction. Talanta, 67: 992 – 996.

27.    Naseri, M. T., Hosseini, M. R. M., Assadi, Y. and Kiani, A. (2008). Rapid determination of lead in water samples by dispersive liquid–liquid microextraction coupled with electrothermal atomic absorption spectrometry. Talanta, 75: 56 – 62.

 




Previous                    Content                    Next