Malaysian Journal of Analytical Sciences Vol 22 No 3 (2018): 458 - 464

DOI: 10.17576/mjas-2018-2203-12

 

 

 

FABRICATION AND CHARACTERIZATION OF RUBY NANOPARTICLES

 

(Fabrikasi dan Pencirian Partikel Nano Delima)

 

Wan Aizuddin Wan Razali*, Azman Kasim , Syamsyir Akmal Senawi, Azhan Hashim, Norihan Yahya, Hartini Ahmad Rafaie

 

Faculty of Applied Sciences,

Universiti Teknologi MARA Pahang, 26400 Bandar Tun Abdul Razak Jengka, Pahang, Malaysia

 

*Corresponding author:  wanaizuddin@pahang.uitm.edu.my

 

 

Received: 4 December 2016; Accepted: 1 December 2017

 

 

Abstract

Numerous works have been done on finding nanoparticles (NPs) with excellent optical properties. In this work, ruby (chromium doped alumina) nanoparticles have been prepared using femtosecond laser ablation. The synthesized nanoparticles were characterised using dynamic light scattering (DLS), transmission electron microscopy (TEM) and fluorescence microscopy. DLS analysis indicates that the particles size is approximately 52 nm. TEM analysis gives smaller particles size with mean size of 38 nm compared to DLS analysis. Spherical shape of the particles was observed through TEM image. The synthesized NPs showed excellent stability in water with +55 mV zeta potential value. The most efficient wavelengths to excite the ruby NPs were determined as 405 nm and 554 nm. The emission peak for the ruby NPs was at 690 nm which is corresponds to 2E-4A2 transition. The synthesized ruby NPs can be applied as a potential bioimaging label

 

Keywords:  ruby nanoparticles, femtosecond laser ablation, emission, bioimaging

 

Abstrak

Pelbagai usaha telah dilakukan bagi mencari partikel nano yang mempunyai sifat optik yang baik. Dalam kajian yang dilakukan, partikel nano delima (kromium dop alumina) adalah dihasilkan melalui pelelasan laser femto saat. Pencirian sintesis partikel nano adalah berdasarkan serakan cahaya dinamik (DLS), Mikroskopi elektron terhantar (TEM) dan mikroskopi pendarfluor. Analisis DLS menunjukkan saiz partikel adalah dalam linkungan 52 nm. Analisis TEM menandakan kewujudan saiz partikel lebih kecil dengan saiz purata pada julat 38 nm berbanding analisis DLS. Bentuk sfera pada partikel-partikel berkenaan dicerap melalui imej TEM. Partikel nano yang dihasilkan memberikan bacaan tahap kestabilan yang amat baik di dalam air pada beza keupayaan zeta 55 mV. Panjang gelombang yang cekap bagi mengujakan partikel nano delima adalah sekitar julat 405 nm dan 554 nm. Puncak sinaran bagi partikel nano delima adalah 690 nm iaitu mewakili anjakan 2E-4A2. Partikel nano delima yang dihasilkan berpotensi untuk digunakan bagi tujuan penandaan imbasanbio.

 

Kata kunci:  partikel nano delima, pelelasan laser femto saat, sinaran, imbasanbio

 

References

1.       Maiman, T. H. (1960). Stimulated optical radiation in ruby. Nature, 187 (4736):  493-494.

2.       Yang, L. Y., Dong, Y. J., Chen, D. P., Wang, C., Da, N., Jiang, X., Zhu, C. and Qiu, J. R. (2005). Upconversion luminescence from 2E state of Cr3+ in Al2O3 crystal by infrared femtosecond laser irradiation. Optics Express, 13 (20):  7893-7898.

3.       Maiman, T. H. (1960). Optical and microwave-optical experiments in ruby. Physical Review Letters, 4 (11):  564-66.

4.       Krizan, J., Mozina, J., Bajsic, I., and Mazaj, I. (2012). Synthesis and fluorescent properties of chromium-doped aluminate nanopowders. Acta Chimica Slovenica, 59(1):163-168.

5.       Patra, A., Tallman, R. E. and Weinstein, B. A. (2005). Effect of crystal structure and dopant concentration on the luminescence of Cr3+ in Al2O3 nanocrystals. Optical Materials, 27(8): 1396-1401.

6.       Schawlow, A. L., Wood, D. L. and Clogston, A. M. (1959). Electronic spectra of exchange-coupled ion pairs in crystals. Physical Review Letters, 3(6):  271-273.

7.       Mollenauer, L. F. and Schawlow, A. L. (1968). Piezospectroscopic studies of exchange-coupled Cr3+ ion pairs in ruby. Physical Review, 168 (2):  309-317.

8.       Kisliuk, P., Chang, N. C., Scott, P. L. and Pryce, M. H. L. (1969). Energy levels of chromium ion pairs in ruby. Physical Review, 184(2): 367-374.

9.       Van der Ziel, J. P. (1974). Spectrum of first-nearest-neighbor Cr3+ pairs in ruby. Physical Review B, 9(7): 2846-2862.

10.    Engstrom, H. and Mollenauer L. F. (1973). Chronospectroscopy of exchange-coupled Cr3+-ion pairs in ruby. Physical Review B, 7 (4): 1616-1626.

11.    Piriyawong, V., Thongpool, V., Asanithi, P. and Limsuwan, P. (2012). Effect of laser pulse energy on the formation of alumina nanoparticles synthesized by laser ablation in water. Procedia Engineering, 32:  1107-1112.

12.    Rahman I. A. and Padavettan, V. (2012). Synthesis of silica nanoparticles by sol-gel: Size-dependent properties, surface modification, and applications in silica-polymer nanocomposites - a review. Journal of Nanomaterials, 2012 (8): 1-15.

13.    Jaworek, A. (2007).  Micro- and  nanoparticle  production  by electrospraying. Powder Technology, 176(1):  18-35.

14.    Mueller, R., Mädler, L. and Pratsinis, S. E. (2003). Nanoparticle synthesis at high production rates by flame spray pyrolysis. Chemical Engineering Science, 58(10):  1969-1976.

15.    Iwamoto, M., Kuroda, K., Zaporojtchenko, V., Hayashi, S. and Faupel, F. (2003). Production of gold nanoparticles-polymer composite by quite simple method. The European Physical Journal D - Atomic, Molecular, Optical and Plasma Physics, 24(1): 365-367.

16.    Nakaso, K., Han, B., Ahn, K. H., Choi, M. and Okuyama, K. (2003). Synthesis of non-agglomerated nanoparticles by an electrospray assisted chemical vapor deposition (ES-CVD) method. Journal of Aerosol Science, 34(7): 869-881.

17.    Lam, C., Zhang, Y. F., Tang, Y. H., Lee, C. S., Bello, I. and Lee, S. T. (2000). Large-scale synthesis of ultrafine Si nanoparticles by ball milling. Journal of Crystal Growth, 220(4): 466-470.

18.    Sajti, C., Sattari, R., Chichkov, B. and Barcikowski, S. (2010). Ablation efficiency of α-Al2O3 in liquid phase and ambient air by nanosecond laser irradiation. Applied Physics A, 100(1): 203-206.

19.    Liu, D. (2013). Effects of Cr content and morphology on the luminescence properties of the Cr-doped alpha-Al2O3 powders. Ceramics International, 39(5): 4765-4769.

 




Previous                    Content                    Next