Malaysian Journal of Analytical Sciences Vol 22 No 3 (2018): 465 - 470

DOI: 10.17576/mjas-2018-2203-13

 

 

 

SYNTHESIZED AND CHARACTERIZATION OF SODIUM COBALT OXIDE AS SODIUM-ION CATHODE BATTERIES USING SOL-GEL METHOD

 

(Sintesis dan Pencirian Sodium Kobalt Oksida Sebagai katod Bateri Ion-Sodium Menggunakan Kaedah Sol-Gel)

 

Sarah Laila Mohd Jan1*, Nur Athirah Mohd Azhar1, Musfiroh Jani2

 

1Faculty of Applied Sciences,

Universiti Teknologi MARA Pahang, 26400 Bandar Tun Abdul Razak Jengka, Pahang, Malaysia

2Faculty of Earth Science,

Universiti Malaysia Kelantan, Kampus Jeli, 17600 Kelantan Malaysia

 

*Corresponding author:  sarahlaila@pahang.uitm.edu.my

 

 

Received: 4 December 2016; Accepted: 1 December 2017

 

 

Abstract

Sodium’s chemical properties are like lithium and as batteries it has potential to be environmentally friendly, easier to recycle but five times much cheaper than lithium-ion batteries. Sodium cobalt oxide (NaCoO2) cathode material in a sodium-ion battery was synthesized by a polyvinyl alcohol (PVA) assisted sol-gel method and its physical characterization was being analysed by using thermogravimetric analysis (TGA), attenuated total reflectance-fourier transform infrared (ATR-FTIR) spectroscopy, field emission scanning electron microscope (FESEM) and X-ray diffractometer (XRD). PVA was chosen as gelating agent as well as carbon source for the synthesized material in this study.  The cathode material is observed to have smooth morphology and the particle sizes reach to sub-micrometre level which benefit for the high rate performance, although the shape of particles was irregular.

 

Keywords:  sodium-ion batteries, cathode material, sol gel

 

Abstrak

Sifat kimia sodium menyerupai lithium dan sebagai bateri ia mempunyai potensi untuk mesra alam sekitar, mudah di kitar semular dan lima kali lebih murah berbanding bateri litium. Sodium kobalt oksida (NaCoO2) iaitu bahan katod yang digunakan dalam ion-sodium bateri disintesiskan dengan kaedah sol- gel dibantu oleh polivinil alkohol (PVA) dan pencirian fizikal dianalisa menggunakan analisa termogravimetrik (TGA), spektroskopi inframerah transformasi fourier (ATR-FTIR), mikroskopi imbasan elektron pancaran medan (FESEM) dan teknik pembelauan sinar-X (XRD). PVA dipilih sebagai agen gelatin dan juga sebagai sumber karbon untuk mensintesiskan bahan kajian ini. Bahan katod yang dihasilkan menunjukkan morfologi permukaan yang rata dan saiz partikel yang mencecah sub-mikrometer memberi kelebihan dari segi kadar prestasi yang tinggi walaupun bentuk partikel tidak seragam.

 

Kata kunci:  bateri ion-sodium, bahan katod, sol gel

 

References

1.       Islam, M. S. and Fisher, C. A. J. (2014). Lithium and sodium battery cathode materials: Computational insight into voltage, diffusion and nanostructural properties. Chemical Society Reviews, 43: 185-204.

2.       Jian, Z., Yu, H. and Zhou, H. (2013). Designing high-capacity cathode materials for sodium-ion batteries. Electrochemistry Communications, 34: 215-218.

3.       Jiang, T., Pan, W., Wang, J., Bie, X., Du, F., Wei, Y., Wang, C. and Chen, G. (2010). Carbon coated Li3V2(PO4)3 cathode material prepared by a PVA assisted sol-gel method. Electrochimica Acta, 55: 3864-3869.

4.       Liu, Z., Jiang, Y., Zeng, X., Xiao, G., Song, H. and Liao, S. (2014). Two-step oxalate approach for the preparation of high performance LiNi0.5Mn1.5O4 cathode material with high voltage. Journal of Power Sources, 247: 437-443.

5.       Qiu, W., Liu, J., Yu, L., Zhang, G., Zhao, H. and Li, T. (2007). Studies on the low-heating solid-state reaction method to synthesize LiNi1/3Co1/3Mn1/3O2 cathode materials. Journal of Power Sources, 174: 701-704.

6.       Doubaji, S., Valvo, M., Saadoune, I., Dahbi, M. and Edstrom, K. (2014). Synthesis and characterization of a new layered cathode material for sodium ion batteries. Journal of Power Sources, 266: 275-281.

7.       Shun-yi, Y., Xian-you, W., Ying, W., Quan-qi, C., Jiao-jiao, L. and Xiu-kang, Y., (2010). Effects of Na content on structure and electrochemical performances of NaxMnO2 +δ cathode material. Transactions of Nonferrous Metals Society of China, 20: 1892-1898.

8.       Yan, J, Yuan, W, Tang, Z, Sha, O, Wang, J, Mao, W and Ma, L (2012). Synthesis of Li3V2(PO4)3 cathode material via a fast sol-gel method based on spontaneous chemical reactions. Journal of Power Sources, 201: 301-306. 

9.       Zhang, M., Guo, S., Zheng, L., Zhang, G., Hao, Z., Kang, L. and Liu, Z., (2013). Preparation of NiMn2O4 with large specific surface area from an epoxide-driven sol-gel process and its capacitance. Electrochimica Acta, 87: 546-553.

10.    Garry, P. G., Paul, W. J. and Manivannan, A. (2004). Formation of cobalt nitrate hydrate, cobalt oxide and cobalt nanoparticles using laser vaporization controlled condensation. Journal of Physical Chemistry B, 108 (28): 9604–9607.

11.    Zhao, J., He, J., Ding, X., Jianhua, Z., Ma, Y., Wu, S. and Huang, R. (2010). A novel sol-gel synthesis route to NaVPO4F as cathode material for hybrid lithium ion batteries. Journal of Power Sources, 195: 6854-6859.

12.    Lei, Y., Li, X., Liu, L. and Ceder, G. (2014). Synthesis and stoichiometry of different layered sodium cobalt oxides. Chemistry of Materials, 26(18): 5288-5296.

13.    Wang, Y., Chou, S., Wexler, D., Liu, H. and Dou, S. X. (2014). High performance sodium-ion batteries and sodium-ion pseudocapacitors based on MoS2 graphene composites. Chemistry - A European Journal, 20(31): 9607-9612.




Previous                    Content                    Next