Malaysian Journal of Analytical Sciences Vol 22 No 3 (2018): 491 - 498

DOI: 10.17576/mjas-2018-2203-17

 

 

 

ELECTROCHEMICAL PROPERTIES OF POLYMER ELECTROLYTES TREATED WITH 6PPD ON 30% POLY(METHYL METHACRYLATE) GRAFTED NATURAL RUBBER

 

(Sifat Elektrokimia Elektrolit Polimer 30% Poli(Metil Metakrilat) Cangkutan Getah Asli Terawat Dengan 6PPD)

 

Ahmad Fairoz Aziz1, Khuzaimah Nazir1. Siti Fadzilah Ayub1, Nurul Ilham Adam2, Muhd Zu Azhan Yahya3, Ab Malik Marwan Ali1,4*

 

1Faculty of Applied Sciences,

Universiti Teknologi MARA, 40450 Shah Alam, Malaysia

2Faculty of Applied Sciences,

Universiti Teknologi MARA, 35400 Tapah Road, Perak, Malaysia

3Faculty of Defence Science and Technology,

Universiti Pertahanan Nasional Malaysia, 57000 Kuala Lumpur, Malaysia

4Institute of Science,

Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia

 

*Corresponding author:  ammali@salam.uitm.edu.my

 

 

Received: 4 December 2016; Accepted: 1 December 2017

 

 

Abstract

30% poly(methyl methacrylate) grafted natural rubber was treated with N-(1,3-dimethylbutyl)-N’-phenyl-p-phenylenediamine (6PPD) additive (TMG30) to retard its degradation before further used as electrolytes.  The polymer electrolytes containing MG30-6PP­­­­­D-LiTF were prepared by solution cast technique. X-ray diffraction studies show the electrolytes with the highest salt content are amorphous in nature. The TMG30-salt complexes were confirmed by using Fourier transformation infrared analysis. The highest ionic conductivity of the TMG30 polymer electrolytes containing 40 wt.% LiTF was found to be 1.5 x 10-2 S/cm at room temperature. Transference number studies show that the sample with highest ionic conductivity exhibits the charge transport species in this TMG30 polymer electrolyte film is predominantly due to ions.

 

Keywords:  methyl-grafted natural rubber, n-(1,3-dimethylbutyl)-n’-phenyl-p-phenylenediamine, polymer electrolytes

 

Abstrak

30% poli(metil metakrilat) cangkutan getah asli telah terawat dengan bahan tambah N-(1,3-dimetilbutil)-N’-fenil-p-fenilindiamine (6PPD) (TMG) untuk melambatkan kemerosotan sebelum digunakan sebagai elektrolit. Elektrolit polimer yang mengandungi MG30-6PPD-LiTf telah disediakan melalui teknik pengacuan larutan. Kajian pembelauan sinar-X menunjukkan elektrolit dengan kandungan garam tertinggi berada dalam keadaan amorfus. Pengkompleksan TMG30-garam telah disahkan dengan menggunakan analisis spektroskopi inframerah transformasi Fourier. Elektrolit polimer TMG30 mengandungi 40 wt.% LiTF didapati menghasilkan kekonduksian ionik tertinggi pada 1.5 x 10-2 S/cm untuk di suhu bilik. Kajian nombor angkutan terhadap sampel filem elektrolit polimer TMG30 yang mempunyai kekonduksian ionik tertinggi menunjukkan pengangkutan cas dalam sampel tersebut adalah disebabkan oleh pergerakan ion.

 

Kata kunci:  cangkutan metil-getah asli, n-(1,3-dimetilbutil)-n’-fenil-p-fenilindiamin, elektrolit polimer

 

References

1.       Ichino, T. and Matsumoto, M. (1993). New solid polymer electrolytes prepared from styrene–butadiene copolymer lattices. Journal of Polymer Science Part A: Polymer Chemistry, 31: 589-591.

2.       Idris, R., Glasse, M. D., Latham, R. J., Linford, R. G. and Schlindwein, W. S. (2001). Polymer electrolytes based on modified natural rubber for used in rechargeable lithium batteries. Journal of Power Sources, 94: 206–211.

3.       Latif, F., Aziz, M., Katun, N., Ali, A. M. M. and Yahya, M. Z. A. (2006). The role and impact of rubber in poly(methyl methacrylate)/lithium triflate electrolyte. Journal of Power Sources, 159: 1401–1404.

4.       Mohamed, S. N., Johari, N. A., Ali, A. M. M., Harun, M. K. and Yahya, M. Z. A. (2008). Electrochemical studies on epoxidised natural rubber-based. Journal of Power Sources, 183: 351–354.

5.       Nazir, K., Ayub, S. F., Aziz, A. F., Zakaria, R., Yahya, M. Z. A. and Ali, A. M. M. (2015). Conductivity and thermal behaviour of epoxidized-30% poly (methyl methacrylate)-grafted natural rubber-lithium triflate based solid polymer electrolytes, Advanced Materials Research, 1107: 175–180.

6.       Ali, A. M. M., Subban, R. H. Y., Bahron, H., Yahya, M. Z. A. and Kamisan, A. S. (2013). Investigation on modified natural rubber gel polymer electrolytes for lithium polymer battery. Journal of Power Sources, 244: 636–640.

7.       Kamisan, A. S., Kudin, T. I. T., Ali, A. M. M. and Yahya, M. Z. A. (2011). Electrical and physical studies on 49% methyl-grafted natural rubber-based composite polymer gel electrolytes. Electrochimica Acta, 57: 207–211.

8.       Yap, K. S., Teo, L. P., Sim, L. N., Majid, S. R. and Arof, A. K. (2012). Investigation on dielectric relaxation of PMMA-grafted natural rubber incorporated with LiCF3SO3. Physica BCondensed Matter, 407: 2421–2428.

9.       Nazir, K., Ayub, S. F., Aziz, A. F., Ali, A. M. M. and Yahya, M. Z. A. (2014). Preparation and characterization of epoxidized-30% poly(methyl methacrylate)-grafted natural rubber polymer electrolyte, Journal of Nano Research, 28: 163–170.

10.    Aziz, A. F., Nazir, K., Ayub, S. F., Zakaria, R., Yahya, M. Z. A. and Ali, A. M. M. (2015). Impedance behavior of treated methyl-grafted natural rubber polymer electrolytes. Advanced Materials Research, 1107: 217–222.

11.    Tian Khoon, L., Hassan, N. H., Rahman, M. Y. A., Vedarajan, R., Matsumi, N. and Ahmad, A., (2015). One-pot synthesis nano-hybrid ZrO2–TiO2 fillers in 49% poly(methyl methacrylate) grafted natural rubber (MG49) based nano-composite polymer electrolyte for lithium ion battery application. Solid State Ionics, 276: 72–79.

12.    Chew, K. W. and Tan, K. W. (2011). The effects of ceramic fillers on PMMA-based polymer electrolyte salted with lithium triflate, LiCF3SO3. International Journal of Electrochemical Science, 6: 5792–5801.

13.    Kim, S. H., Choi, K. H., Cho, S. J., Kil, E. H. and Lee, S. Y. (2013). Mechanically compliant and lithium dendrite growth-suppressing composite polymer electrolytes for flexible lithium-ion batteries. Journal of Materials Chemistry A, 1: 4949-4955.

14.    Ali, A. M. M., Yahya, M. Z. A., Bahron, H. and Subban, R. H. Y. (2006). Electrochemical studies on polymer electrolytes based on poly(methyl methacrylate)-grafted natural rubber for lithium polymer battery. Ionics (Kiel), 12: 303–307.

15.    Kumutha, K., Alias, Y. and Said, R. (2005). FTIR and thermal studies of modified natural rubber based polymer electrolytes. Ionics (Kiel), 11: 472–476.

16.    Cibulková, Z., Šimon, P., Lehocký, P. and Balko, J. (2005). Antioxidant activity of 6PPD derivatives in polyisoprene matrix studied by non-isothermal DSC measurements, Journal of Thermal Analysis and Calorimetry, 80: 357–361.

17.    Breza, M., Kortišová, I. and Cibulková, Z. (2006). DFT study of the reaction sites of N,N-substituted P-phenylenediamine antioxidants. Polymer Degradation and Stability, 91: 2848–2852.

18.    Aziz, A. F. and Ali, A. M. M. (2012). Thermal oxidation studies on methyl grafted natural rubber polymer electrolytes with paraphenylene diamine additive, 2012 IEEE Colloquium Humanity Science & Engineering: pp. 719–723.

19.    Kumutha, K. and Alias, Y. (2006). FTIR spectra of plasticized grafted natural rubber- LiCF3SO3 electrolytes. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 64: 442–447.

20.    Ali, A. M. M., Subban, R. H. Y., Bahron, H., Winie, T., Latif, F. and Yahya, M. Z. A. (2008). Grafted natural rubber-based polymer electrolytes: ATR-FTIR and conductivity studies. Ionics (Kiel), 14: 491–500.

21.    Ali, A. M. M., Yahya, M. Z. A., Bahron, H., Subban, R. H. Y., Harun, M. K. and Atan, I. (2007). Impedance studies on plasticized PMMA-LiX [X: CF3SO3−, N(CF3SO2)2−] polymer electrolytes. Materials Letters, 61: 2026–2029.

 




Previous                    Content                    Next