Malaysian Journal of Analytical Sciences Vol 22 No 3 (2018): 499 - 507

DOI: 10.17576/mjas-2018-2203-18

 

 

 

COMPARATIVE STUDY OF MICROBIAL FUEL CELL’S PERFORMANCE USING THREE DIFFERENT ELECTRODES

 

(Kajian Perbandingan Bagi Prestasi Sel Bahan Bakar Mikrob Menggunakan Tiga Elektrod yang Berbeza)

 

Khairul Baqir Alkhair1,3*, Oskar Hasdinor Hassan2, Sharifah Aminah Syed Mohamed1,Yap Kian Chung Andrew3, Zulkifli Ab. Rahman3, Tunku Ishak Tunku Kudin1,Ab. Malik Marwan Ali1,4, Mohd Zu Azhan Yahya5,

 Muhammad Haikal Zainal1

 

1Faculty of Applied Science

2Faculty of Art and Design

Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia

3Milling and Processing Unit, Enginering and Processing Research Division,

Malaysian Palm Oil Board, 43000 Kajang, Selangor, Malaysia

4Institute of Science,

Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia

5Faculty of Defence Science and Technology,

Universiti Pertahanan Nasional Malaysia, 57000 Sungai Besi, Kuala Lumpur, Malaysia

 

*Corresponding author:  oskar@salam.uitm.edu.my

 

 

Received: 4 December 2016; Accepted: 1 December 2017

 

 

Abstract

Microbial Fuel Cell (MFC) is an alternative method of renewable energy which have gained considerable attention due to its capability to generate electricity and treat wastewater such as palm oil mill effluent (POME). MFC’s mechanism on its electrochemical process is still lacking and further studies is needed. The objectives of this study are (1) to determine the compatibility of MFC device in generating electricity by using three different electrodes and (2) to study the effect of sodium hydroxide (NaOH) to MFC’s performance. In this work, the MFC device is associated with 3 different electrodes which are carbon brush (CB), carbon cloth (CC) and pre-treated carbon cloth (PCC) on its anode chamber. There are 2 types of substrates used in this experiment which are POME with the presence of bacteria (POME+) and POME without bacteria in it (POME-). The experiment was carried out for 120 hours and its power generation was monitored. The experimental result shows that PCC with POME+ yielded the highest power density of 49.88 mW/m2 at 27 hours as compared to the others. In addition, CC with POME- has the highest chemical oxygen demand (COD) deduction which indicates the POME treatment was deducted by 45.93%. NaOH affected the performance of MFC but is insignificant to influence the redox reaction of MFC.

 

Keywords:  bio-electricity, fuel cell, wastewater treatment

 

Abstrak

Sel Bahan Bakar Mikrob (MFC) merupakan kaedah alternatif tenaga boleh diperbaharui yang mendapat perhatian yang baik kerana kemampuannya menjana elektrik dan merawat air kumbahan seperti sisa kilang minyak sawit (POME). Mekanisma MFC bagi proses elektrokimia masih kurang dan kajian lanjut diperlukan. Objektif kajian ini adalah (1) menentukan kesesuaian peranti MFC dalam menghasilkan elektrik dengan menggunakan tiga elektrod yang berbeza dan (2) untuk mengkaji kesan natrium hidroksida (NaOH) kepada prestasi MFC. Dalam kerja ini, peranti MFC dikaitkan dengan 3 elektroda yang berbeza iaitu berus karbon (CB), kain karbon (CC) dan pra rawatan kain karbon (PCC) di ruang anodnya. Terdapat 2 jenis substrat yang digunakan dalam eksperimen ini iaitu POME dengan kehadiran bakteria (POME+) dan POME tanpa bakteria di dalamnya (POME-). Eksperimen ini dijalankan selama 120 jam dan penjanaan kuasanya dipantau. Keputusan eksperimen menunjukkan bahawa PCC dengan POME+ menghasilkan ketumpatan kuasa tertinggi 49.88 mW/m2 pada 27 jam berbanding yang lain. Di samping itu, CC dengan POME- mempunyai permintaan oksigen kimia (COD) tertinggi yang menunjukkan rawatan POME berjaya sebanyak 45.93%. NaOH mempengaruhi prestasi MFC tetapi tidak signifikan untuk mempengaruhi tindak balas redoks MFC.

 

Kata kunci:  bio-elektrik, sel bahan bakar, rawatan air kumbahan

 

References

1.       Malaysian Federal Subsidiary Legislation (1978). Environmental quality act 1974. Access from https://www.doe.gov.my/portalv1/wpcontent/uploads/2015/01/Environmental_Quality_Scheduled_Wastes Regulations_2005_-_P.U.A_294-2005.pdf

2.       Andrew, Y. K. C. and Manaf, F. Y. A. (2013). Fermentation pathway for palm oil mill effluent. Palm Oil Engineering Bulletin, 109: 13-23.

3.       Logan, B. E. (2008). Microbial fuel cells. John Wiley & Sons, Inc, United Kingdom: pp.200.

4.       Liu, H. and Logan, B. E. (2004). Electricity generation using an air-cathode single chamber microbial fuel cell in the presence and absence of a proton exchange membrane. Environmental Science and Technology, 38(14): 4040–4046.

5.       Torres, C. I., Marcus, A. K., Lee, H. S., Parameswaran, P., Krajmalnik-Brown, R. and Rittmann, B. E. (2010). A kinetic perspective on extracellular electron transfer by anode-respiring bacteria. FEMS Microbiology. Reviews, 34: 3–17.

6.       Samir, K. K., Rao, Y. S., Zhang, T. C., Budhhi, P. L., Tyagi, R. D. and Kao, C. M. (2010). Bioenergy and biofuel from biowastes and biomass. Institution American Society Civil Engineering, 6: 116–126.

7.       Nair, R., Renganathan, K., Barathi, S. and Venkatraman, K. (2013). Performance of salt-bridge microbial fuel cell at various agarose concentrations using hostel sewage waste as substrate. International Journal of Advance Research Technology, 2 (5): 326–330.

8.       Logan, B. E., Hamelers, B., Rozendal, R., Schroder, U., Keller, J., Freguai, S., Aelterman, P., Verstraete, W. and Rabaey, K. (2006). Microbial fuel cells: Methodology and technology. Environment Science and Technology, 40(17): 5181–5192.

9.       Baranitharan, E., Khan, M. R. and Prasad, D. (2013). Treatment of palm oil mill effluent in microbial fuel cell using polyacrylonitrile carbon felt as electrode. Journal of Medical and Bioengineering, 2(4): 252–256.

10.    Garraín, D. (2011). Polymer electrolyte membrane fuel cells (PEMFC) in automotive applications: environmental relevance of the manufacturing stage. Smart Grid Renewable Energy, 2(2): 68–74.

11.    Alhassan, M. and Garba, M. U. (2006). Design of an alkaline fuel cell. Leonardo Electronic Journal of Practices and Technologies, 9: 99–106.

12.    Bond D. R. (2010) Electrodes as electron acceptors, and the bacteria who love them. In: Barton L., Mandl M., Loy A. (eds) Geomicrobiology: Molecular and environmental perspective. Springer, Dordrecht: pp. 385-399.

13.    Logan, B. E. and Regan, J. M. (2006). Electricity-producing bacterial communities in microbial fuel cells. Trends Microbiology, 14(12): 512–518.

14.    Gallert, C. and Winter, J. (2005). Bacterial metabolism in wastewater treatment systems. Wiley-VCH, Weinheim, Germany: pp. 1-48.

15.    Alalayah, W. M., Kalil, M. S., Kadhum, A. A. H., Jahim, J. M. and Alauj, N. M. (2008). Hydrogen production using Clostridium saccharoperbutylacetonicum N1-4 (ATCC 13564). International Journal Hydrogen Energy, 33(1): 7392–7396.

16.    Biffinger, J. C., Byrd, J. N., Dudley, B. L. and Ringeisen, B. R. (2008). Oxygen Exposure promotes fuel diversity for shewanella oneidensis microbial fuel cells. Biosensors and Bioelectronics, 23: 820–826.

17.    Lang, L. Y. (2007). Treatability of palm oil mill effluent (POME) using black liquor in an anaerobic Treatment Process. Thesis Master of Science, Universiti Sains Malaysia, Malaysia.

18.    Rajesh, J., Khac, U. Do, Adish, S., Ick-Tae, Y. and Kaliappan, S. (2012). A novel method of sludge pretreatment using the combination of alkali. Journal of Enviromental Biology, 33: 249–253.

19.    Patil, S. A., Harnisch, F., Koch, C., Hübschmann, T., Fetzer, I., Carmona-Martínez, A. A., Müller, S. and Schröder, U. (2011). Electroactive mixed culture derived biofilms in microbial bioelectrochemical systems: The role of pH on biofilm formation, performance and composition. Bioresources. Technology, 102(20): 9683–9690.

20.    Puig, S., Serra, M., Coma, M., Cabré, M., Balaguer, M. D. and Colprim, J. (2010). Effect of pH on nutrient dynamics and electricity production using microbial fuel cells. BioresourcesTechnology, 101: 9594–9599.

21.    Zhang, X., He, W., Ren, L., Stager, J., Evans, P. J. and Logan, B. E. (2015). COD removal characteristics in air-cathode microbial fuel cells. Bioresources Technology, 176: 23–31.

 




Previous                    Content                    Next