Malaysian Journal of Analytical Sciences Vol 22 No 3 (2018): 514 - 521

DOI: 10.17576/mjas-2018-2203-20

 

 

 

PREPARATION, CHARACTERIZATION AND PERFORMANCE OF POLYVINYLIDENE FLUORIDE/TETRAOCTYL PHOSPHONIUM BROMIDE NANOCOMPOSITE ULTRAFILTRATION MEMBRANE

 

(Penyediaan, Pencirian dan Prestasi Membran Ultraturasan Nanokomposit Polivinilidena Flourida/Tetraoktil Fosfonium Bromida)

 

Asmadi Ali1*, Connie Ling Mee Yu1, Nur Alyaa Mohd Sani1, Mohd Aidil Adha Abdullah2, Mohamad Awang1, Nor Shalihan Mohamed1, Mohd Azizi Che Yunus3

 

1School of Ocean Engineering

2School of Fundamental Science

Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia.

3Centre of Lipid Engineering and Applied Research (CLEAR),

Ibnu Sina Institute for Industrial and Scientific Research,

Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia

 

*Corresponding author:  asmadi@umt.edu.my

 

 

Received: 16 April 2017; Accepted: 7 March 2018

 

 

Abstract

Ultrafiltration (UF) membrane is widely used in many industrial areas and applications. Polyvinylidene fluoride (PVDF) is one of the commonly used materials for UF membrane fabrication due to its excellent properties. However, its hydrophobic nature causes the decrease of its demands and limits its applications. Hence, tetraoctyl phosphonium bromide (TOPBr) clay was used as a nanofiller material and was added into the PVDF matrix to decrease the hydrophobic surface through the antifouling properties of the PVDF/TOPBr nanocomposite membrane. The phase inversion process was employed for membrane fabrication which characterizes the water content and porosity of the PVDF/TOPBr nanocomposite UF membrane and to determine the performance of membrane in terms of pure water permeation, protein separation and fouling parameters. The results showed the increment of TOPBr dosage increases the water content and porosity, as well as enhances the porosity structure of PVDF/TOPBr nanocomposite membrane compared to the original PVDF membrane. The protein separation performance test revealed that after the addition of TOPBr, the flux increased from 2.06 L/m2.h to 20.22 L/m2.h with a 1.0 wt.% increase in protein separation as a result of the increase  in the membrane hydrophilicity and porosity of the nanocomposite membrane. Moreover, PVDF/TOPBr1.0 nanocomposite showed the highest antifouling properties and flux recovery at 93% compared to other PVDF/TOPBr, as well as the native PVDF membrane.

 

Keywords:  ultrafiltration, nanocomposite membrane, polyvinylidene fluoride, clay

 

Abstrak

Membran ultraturasan (UF) digunakan secara meluas dalam banyak industri dan aplikasinya. Polivinilidena fluorida (PVDF) adalah bahan yang biasanya digunakan untuk fabrikasi membran kerana mempunyai sifat yang cemerlang. Walaubagaimanapun, sifat asal yang hidrofobik menyebabkan penurunan permintaannya dan menghadkan penggunaannya. Maka, tanah liat tetraoktil fosfonium bromida (TOBr) telah digunakan sebagai bahan pengisi nano dan ditambah ke dalam matrik PVDF untuk mengurangkan permukaan hidrofobik melalui sifat antikotoran oleh membran nanokomposit PVDF/TOPBr. Proses fasa sonsangan digunakan untuk fabrikasi membran yang mencirikan kandungan air dan keliangan membran nanoomposit PVDF/TOPBr dan untuk menentukan prestasi membran dari segi penyerapan air tulen, pemisahan protein dan parameter pengotoran. Keputusan menunjukkan kenaikan dos TOPBr meningkatkan kandungan air dan keliangan, serta meningkatkan struktur keliangan membran nanokomposit PVDF/TOPBr berbanding dengan membran PVDF asal. Ujian prestasi pemisahan protein menunjukkan bahawa selepas penambahan TOPBr, fluks meningkat dari 2.06 L/m2.h kepada 20.22 L/m2.h dengan kenaikan 1.0 wt.% dalam pemisahan protein akibat daripada peningkatan hidrofilik membran dan keliangan membran nanokomposit. Selain itu, nanokomposit PVDF/TOPBr1.0 menunjukkan sifat antikotoran yang tertinggi dan pemulihan fluks pada 93% berbanding dengan PVDF /TOPBr yang lain serta membran PVDF asli.

 

Kata kunci:  ultraturasan, membran nanokomposit, polivinilidena fluorida, tanah liat

 

References

1.       Kang, G. and Cao, Y. (2014). Application and modification of polyvinylidene flouride (PVDF) membranes – A review. Journal of Membrane Science, 463: 145-165.

2.       Rajabi, H., Ghaemi, N., Madaeni, S. S., Daraei, P., Ali, M. and Falsafi, M. (2014). Nanoclay embedded mixed matrix PVDF nanocomposite membrane: preparation, characterization and biofouling resistance. Applied Surface Science, 313: 207-214.

3.       Ismail, N. M., Ismail, A. F. and Mustaffa, A. (2014). Characterization of polyethersulfone/cloisite 15A mixed matrix membrane for CO2/CH4 separation. Jurnal Teknologi, 9: 83-87.

4.       Wu, G., Gan, S., Cui, L. and Xu, Y. (2008). Preparation and characterization of PES/TiO2 composite membranes. Applied Surface Science, 254(21): 7080-7086.

5.       Zulhairun, A. K., Ismail, A. F., Matsuura, T., Abdullah, M. S. and Mustafa, A. (2014). Asymmetric mixed matrix membrane incorporating organically modified clay particle for gas separation. Chemical Engineering Journal, 241: 495-503.

6.       Ali, A., Mohamed, N. S., Awang, M. and Mohd Sani, N. A. (2016). Preparation and characterization of alkylphosphonium modified montmorillonite. International Journal of Applied Chemistry, 12(1): 93-98.

7.       Ali, A., Yunus, R. M., Awang, M., Johari, A. and Mat, R. (2014). Effect of cellulose acetate phthalate (CAP) on characterics and morphology of polysulfone/cellulose acetate phthalate (Psf/CAP) blend membranes. Applied Mechanics and Materials, 493: 640-644.

8.       Ameduri, B. (2009). From vinylidene fluoride (PVDF) to the applications of VDF-containing polymers and copolymers: recent developments and future trends. Chemical Reviews, 109(12): 6632-6686.

9.       Ali, A., Awang, M., Mat, R., Johari, A., Kamaruddin, M. J. and Sulaiman, W. R. W. (2014). Influence of hydrophilic polymer on pure water flux, permeability coefficient, and porosity of polysulfone blend membranes. Advanced Materials Research, 931–932: 168–172.

10.    Ahmad, A. L., Abdulkarim, A. A., Ooi, B. S. and Ismail, S. (2013). Recent development in additives modifications of polyethersulfone membrane for flux enhancement. Chemical Engineering Journal, 223: 246–267.

11.    Arthanareeswaran, A., Devi, T. K. S. and Raaajenthiren, M. (2008). Effect of silica particles on cellulose acetate blend ultrafiltration membranes: Part 1. Separation and Purification Technology, 64 (1): 38–47.

12.    Arthanareeswaran, A. and Thanikaivelan, P. (2010). Fabrication of cellulose acetate-zirconia hybrid membranes for ultrafiltration applications: Performance, structure and fouling analysis. Separation and Purification Technology, 74(2): 230-235.

13.    Ali, A., Yunus, M. R., Awang, M. and Yunus, C. M. A. (2015). Influence of hydrophilic polymer on proteins separation, molecular weight cut-off (MWCO) and average pore size of polysulfone blend Membrane. Jurnal Teknologi, 74(7): 53-56.

14.    Anadão, P., Sato, L. F., Montes, R. R. and Santis, H. S. De. (2014). Polysulphone/montmorillonite nanocomposite membranes: Effect of clay addition and polysulphone molecular weight on the membrane properties. Journal of Membrane Science, 455: 187-199.

15.    Monticelli, O., Bottino, A., Scandale, I., Capannelli, G. and Russo, S. (2006). Preparation and properties of polysulfone – clay composite membranes. Journal of Applied Science, 103(6): 3637-3644.

16.    Daraei, P., Madaeni, S. S., Ghaemi, N., Khadivi, M. A., Astinchap, B. and Moradian, R. (2013). Enhancing antifouling capability of PES membrane via mixing with various type of polymer modified multi-walled carbon nanotube. Journal of Membrane Science, 444: 184-191.

17.    Zularisam, A. W., Ismail, A. F., Salim, M. R., Sakinah, M. and Ozaki, H. (2007) The effects of natural organic matter (NOM) fractions on fouling characteristics and flux recovery of ultrafiltration membranes. Desalination: 212(1-3): 191-208.

18.    Zulkali, M. M. D., Ahmad, A. L. and Derek, C. J. C. (2005). Membrane application in proteomic studies: preliminary studies on the effect of pH, ionic strength and pressure on protein fractionation. Desalination: 179(1-3): 381-390.




Previous                    Content                    Next