Malaysian Journal of Analytical Sciences Vol 22 No 3 (2018): 522 - 531

DOI: 10.17576/mjas-2018-2203-21

 

 

 

ALGINATE AEROGELS DRIED BY SUPERCRITICAL CO2 AS HERBAL DELIVERY CARRIER

 

(Pengeringan Gel Aero Alginat oleh CO2 Supergenting Sebagai Pembawa Penghantaran Herba)

 

Ana Najwa Mustapa1*, Ángel Martín1, María José Cocero2

 

1Faculty of Chemical Engineering,

Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia

2Department of Chemical Engineering and Environmental Technology,

University of Valladolid, Calle Doctor Mergelina s/n, 47011 Valladolid, Spain

 

*Corresponding author: anajwa@salam.uitm.edu.my

 

 

Received: 16 April 2017; Accepted: 7 March 2018

 

 

Abstract

Herbal medicinal plant have been recognized as alternative and natural drugs for therapeutic purposes due to their high content of phytocompounds with anti-bacterial, antioxidant and anti-inflammatory properties.  Low solubility and poor absorption of medicinal compounds are seen as major challenges for herbal drugs. Impregnation of these substances into aerogels as a carrier is an innovative to improve poorly soluble compounds. In this work, alginate hydrogels were produced via sol-gel processing method and dried by supercritical CO2 drying to obtain high porous structure of alginate aerogels. Alginate is a type of polysaccharides that is widely applied in biomedical, pharmaceuticals, cosmetics, and foods due to its nontoxic, stability and versatility properties. Plant extracts of Clinacanthus nutans Lindau (C. nutans) were impregnated into the alginate aerogels via liquid media followed by supercritical drying and via supercritical CO2 assisted impregnation technique. Results exhibited that the initial concentration of polyphenols of the C.nutans extracts impregnated in the alginate aerogels is stable in the range of 0.796 to 0.745 mg/g in 6 month and drastically reduced after 9 month of storage duration. The herbal extract type C.nutans-100 loaded via supercritical CO2 impregnation has a comparable specific loading to the method of liquid media, range from 1.4 to 1.5 × 10-4 g/m2 whereas the specific loading of C.nutans-50 extract impregnated via liquid media showed higher compared with the loading by method of supercritical CO2.

 

Keywords:  supercritical, drying, alginate, aerogels, Clinacanthus nutans Lindau

 

Abstrak

Tumbuhan ubatan herba telah diiktiraf sebagai ubat-ubatan alternatif dan semula jadi untuk tujuan terapeutik kerana kandungan sebatian fito yang tinggi  dengan ciri-ciri anti-bakteria, anti-pengoksidaan dan anti-radang, kelarutan dan penyerapan yang rendah sebatian perubatan dilihat sebagai cabaran besar untuk ubat-ubatan herba. Hal memberi bahan ke dalam gel aero sebagai pembawa adalah suatu tindakan yang inovatif untuk meningkatkan keterlarutan sebatian yang kurang larut dalam air. Dalam kajian ini, gel aero alginat telah dihasilkan melalui kaedah pemprosesan sol-gel dan dikeringkan melalui CO2 supergenting untuk mendapatkan struktur berliang tinggi. Alginat adalah sejenis polisakarida yang sinonim dalam bioperubatan, farmaseutikal, kosmetik dan makanan disebabkan oleh sifatnya yang tidak toksik, kestabilan yang tinggi dan serba boleh dalam pelbagai bidang. Dalam kajian ini, ekstrak tumbuhan Clinacanthus nutans Lindau (C. nutans) yang diperolehi daripada teknik pengekstrakan gelombang mikro (MAE) telah diimpregnasi ke dalam gel aero alginat menggunakan kaedah penjerapan cecair diikuti dengan pengeringan menggunakan CO2 supergenting dan juga impregnasi menggunakan CO2 supergenting. Ekstrak herba C. nutans-100 yang diimpregnasi menggunakan bendalir CO2 supergenting menunjukkan kandungan spesifik yang hampir sama dengan kaedah media cecair iaitu dalam lingkungan 1.4 hingga 1.5 × 10-4 g/m2 berat. Manakala, bagi ekstrak C. nutans-50, kandungan spesifiknya yang diimpregnasikan menggunakan kaedah media cecair adalah lebih tinggi berbanding dengan kaedah CO2 supergenting iaitu , masing-masing.  sebanyak 5.4 × 10-5 g/m2 dan 4.9 × 10-6.

 

Kata kunci:  supergenting, pengeringan, alginat, aerogel, Clinacanthus nutans Lindau

 

References

1.       Mehling, T., Smirnova, I., Guenther, U. and Neubert, R. H. H. (2009). Polysaccharide-based aerogels as drug carriers. Journal of Non-Crystal Solids, 355(50-51): 1-7.

2.       Veronovski, A., Knez, Ž. and Novak, Z. (2013). Preparation of multi-membrane alginate aerogels used for drug delivery. Journal of Supercritical Fluids, 79(1): 209-215.

3.       Paques, J. P., Sagis, L. M. C., Van Rijn, C. J. M. and van der Linden, E. (2014). Nanospheres of alginate prepared through w/o emulsification and internal gelation with nanoparticles of CaCO3. Food Hydrocolloid, 40(1): 182-188.

4.       Wachtel-Galor, S. and Benzie, I. (2011). Herbal medicine: An introduction to its history, usage, regulation, current trends, and research needs. CRC Press/Taylor and Francis, Boca Raton.

5.       Devi, V. K., Jain, N., and Valli, K. S. (2010). Importance of novel drug delivery systems in herbal medicines. Pharmacognosy Reviews, 4(7): 27-31.

6.       Kalishwaralal, K., BarathManiKanth, S., Pandian, S. R. K., Deepak, V. and Gurunathan, S. (2010). Silver nanoparticles impede the biofilm formation by Pseudomonas aeruginosa and Staphylococcus epidermidis. Colloids and Surfaces B: Biointerfaces, 79(2): 340-344.

7.       Shekunov, B. Y., Chattopadhyay, P., Seitzinger, J. and Huff, R. (2006). Nanoparticles of poorly water-soluble drugs prepared by supercritical fluid extraction of emulsions. Pharmaceutical Research, 23(1): 196-204.

8.       de Paz, E., Martín, Á., Bartolomé, A., Largo, M. and Cocero, M. J. (2014). Development of water-soluble β-carotene formulations by high-temperature, high-pressure emulsification and antisolvent precipitation. Food Hydrocolloid, 37(1): 14-24.

9.       Gonçalves, V. S. S., Rodríguez-Rojo, S., De Paz, E., Mato, C., Martín, Á. and Cocero, M. J. (2015). Production of water soluble quercetin formulations by pressurized ethyl acetate-in-water emulsion technique using natural origin surfactants. Food Hydrocolloid, 51(1): 295-304.

10.    Abarca, R. L., Rodríguez, F. J., Guarda, A., Galotto, M. J. and Bruna, J. E. (2016). Characterization of beta-cyclodextrin inclusion complexes containing an essential oil component. Food Chemistry, 196(1): 968-975.

11.    Chowdary, K. P. R. and Nalluri, B. N. (2000). Nimesulide and β-Cyclodextrin inclusion complexes: Physicochemical characterization and dissolution rate studies. Drug Development and Industrial Pharmacy, 26(11): 1217-1220.

12.    Gong, K., Rehman, I. U. and Darr, J. A. (2007). synthesis of poly(sebacic anhydride)-indomethacin controlled release composites via supercritical carbon dioxide assisted impregnation. International Journal of Pharmaceutics, 338(1-2): 191-197.

13.    Duarte, A. R. C., Casimiro, T., Aguiar-Ricardo, A., Simplício, A. L. and Duarte, C. M. M. (2006). Supercritical fluid polymerisation and impregnation of molecularly imprinted polymers for drug delivery. Journal of Supercritical Fluids, 39(1): 102-106.

14.    Veres, P., López-Periago, A. M., Lázár, I., Saurina, J. and Domingo, C. (2015). Hybrid aerogel preparations as drug delivery matrices for low water-solubility drugs. International Journal of Pharmaceutics, 496(2): 360-370.

15.    Pantić, M., Knez, Ž. and Novak, Z. (2016). Supercritical impregnation as a feasible technique for entrapment of fat-soluble vitamins into alginate aerogels. Journal of Non-Crystal Solids, 432: 516-526.

16.    Arruebo, M. (2012). drug delivery from structured porous inorganic materials. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 40(1): 16-30.

17.    Cheng, Y., Lu, L., Zhang, W., Shi, J. and Cao, Y. (2012). Reinforced low density alginate-based aerogels: preparation, hydrophobic modification and characterization. Carbohydrate Polymers, 88(3): 1093-1099.

18.    Ciftci, D., Ubeyitogullari, A., Huerta, R. R., Ciftci, O. N., Flores, R. A. and Saldaña, M. D. A. (2017). Lupin hull cellulose nanofiber aerogel preparation by supercritical CO2 and freeze drying. Journal of Supercritical Fluids, 127(1): 137-145.

19.    Shahzamani, M., Bagheri, R., Masoomi, M., Haghgoo, M. and Dourani, A. (2017). Effect of drying method on the structure and porous texture of silica-polybutadiene hybrid gels: supercritical vs. ambient pressure drying. Journal of Non-Crystalline Solids, 460(1): 119-124.

20.    Sakdarat, S., Shuyprom, A., Pientong, C., Ekalaksananan, T. and Thongchai, S. (2009). Bioactive constituents from the leaves of Clinacanthus nutans Lindau. Bioorganic & Medicinal Chemistry, 17(5): 1857-1860.

21.    Mustapa, A. N., Martin, Á., Mato, R. B. and Cocero, M. J. (2015). Extraction of phytocompounds from the medicinal plant Clinacanthus nutans Lindau by microwave-assisted extraction and supercritical carbon dioxide extraction. Industrial Crops and Products, 74(1): 83-94.

22.    Mustapa, A. N., Martin, A., Sanz-Moral, L. M., Rueda, M., & Cocero, M. J. (2016). Impregnation of medicinal plant phytochemical compounds into silica and alginate aerogels. The Journal of Supercritical Fluids, 116, 251-263.

23.    Daemi, H. and Barikani, M. (2012). Synthesis and characterization of calcium alginate nanoparticles, sodium homopolymannuronate salt and its calcium nanoparticles. Scientia Iranica, 19(6): 2023-2028.

24.    Veronovski, A., Novak, Z. and Knez, Z. (2012). Synthesis and use of organic biodegradable aerogels as drug carriers. Journal of Biomaterials Science Polymer Edition, 23(7): 873-886.

25.    Marizza, P., Pontoni, L., Rindzevicius, T., Alopaeus, J. F., Su, K., Zeitler, J. A., Keller, S. S., Kikic, I., Moneghini, M., De Zordi, N., Solinas, D., Cortesi, A. and Boisen, A. supercritical impregnation of polymer matrices spatially confined in microcontainers for oral drug delivery: Effect of temperature, pressure and time. Journal of Supercritical Fluids, 107(1): 145-152.

26.    Champeau, M., Thomassin, J. M., Tassaing, T. and Jérôme, C. Drug loading of polymer implants by supercritical CO2 assisted impregnation: A review. Journal of Controlled Release, 209(1): 248-259.

27.    Tappi, S., Tylewicz, U., Romani, S., Dalla Rosa, M., Rizzi, F. and Rocculi, P. (2017). Study on the quality and stability of minimally processed apples impregnated with green tea polyphenols during storage. Innovative Food Science and Emerging Technologies, 39(1): 148-155.

28.    Sun, Y. and Li, W. (2017). Effects the mechanism of micro-vacuum storage on broccoli chlorophyll degradation and builds prediction model of chlorophyll content based on the color parameter changes. Scientia Horticulturae, 224(1): 206-214.

29.    Masmoudi, Y., Ben Azzouk, L., Forzano, O., Andre, J. M. and Badens, E. (2011). Supercritical impregnation of intraocular lenses. Journal of Supercritical Fluids, 60(1): 98-105.

30.    Manna, L., Banchero, M., Sola, D., Ferri, A., Ronchetti, S. and Sicardi, S. (2007). Impregnation of PVP microparticles with ketoprofen in the presence of supercritical CO2. Journal of Supercritical Fluids, 42(3): 378-384.

31.    Marizza, P., Keller, S. S., Müllertz, A. and Boisen, A. (2014). Polymer-filled microcontainers for oral delivery loaded using supercritical impregnation.  Journal of Controlled Release, 173(1): 1-9.

 




Previous                    Content                    Next