Malaysian Journal of Analytical Sciences Vol 22 No 3 (2018): 561 - 569

DOI: 10.17576/mjas-2018-2203-25

 

 

 

SEPARATION OF FATTY ACIDS FROM PALM OIL USING ORGANIC SOLVENT NANOFILTRATION

 

(Pemisahan Asid Lemak daripada Minyak Kelapa Sawit Menggunakan Penuras Nano Pelarut Organik)

 

Dayang Nur Fitrah Awang Ismail and Nazlee Faisal Ghazali*

 

Department of Bioprocess Engineering,

Faculty of Chemical and Energy Engineering,

Universiti Teknologi Malaysia, 81310 Skudai, Johor Bahru, Johor, Malaysia

 

*Corresponding author:  nazlee@utm.my

 

 

Received: 16 April 2017; Accepted: 7 March 2018

 

 

Abstract

Distillation of fatty acid from traditional recovery method consumes a lot of energy. Membrane process is more preferred because it reduces energy consumption. In this work, the possibility of separating free fatty acid (FFA) from palm oil using organic solvent nanofiltration was studied. Various commercial organic solvent nanofiltration membranes were tested using dead end filtration for their ability to remove free fatty acid from palm oil/acetone mixture. In all membranes, triglycerides (TAG) were preferentially retained at increasing pressure, while FFA were permeated through the membrane. All the three membranes showed selective permeation of FFA, with Solsep 030306 gave the highest selectivity of FFA over triglycerides. The best fatty acid separation performance was achieved using NF030306 membrane with acetone at pressure in the range of 30 to 40 bar and 3.6 g/L concentration of fatty acid. Using NF030306 membrane, 55% of low fatty acid and 87% of triglycerides were rejected from the system.  Good separation was achieved at high pressure and concentration. We successfully demonstrated the separation of fatty acid separation from palm oil using organic solvent nanofiltration could be achieved.

 

Keywords:  free fatty acid, palm oil, organic solvent nanofiltration, deacidification

 

Abstrak

Pemulihan tradisional asid lemak daripada minyak yang boleh dimakan menggunakan sejumlah besar tenaga. Jika penyulingan digantikan dengan proses membran, penggunaan tenaga boleh dikurangkan dengan banyak. Dalam kajian ini, kami akan mengkaji kemungkinan untuk memisahkan asid lemak bebas daripada minyak kelapa sawit dengan menggunakan penuras nano pelarut organik. Pelbagai pelarut organik membran penuras nano komersial telah diuji menggunakan penuras nano untuk keupayaan mereka untuk memisahkan asid lemak bebas daripada campuran kelapa sawit/aseton. Untuk semua membran, trigliserida adalah dikekalkan pada tekanan yang semakin meningkat, manakala asid lemak meresap melalui membran. Ketiga-tiga membran menunjukkan penyerapan terpilih asid lemak, bagaimanapun Solsep 030306 memberikan pemilihan tertinggi asid lemak/trigliserida. Pemisahan asid lemak yang terbaik dicapai dengan menggunakan membran NF030306 dengan aseton pada tekanan dalam lingkungan 30 hingga 40 bar dan 3.6 g/L kepekatan asid lemak. Penolakan asid lemak yang rendah iaitu 55% dan penolakan trigliserida yang tinggi sehingga 87% telah dicapai menggunakan membran NF030306. Pemisahan baik dicapai pada tekanan tinggi dan kepekatan tinggi. Ia menunjukkan pemisahan asid lemak daripada minyak kelapa sawit menggunakan penuras nano pelarut organik boleh dicapai.

 

Kata kunci:  asid lemak bebas, minyak sawit, penuras nano pelarut organik, penyahasidan

 

References

1.       Rossi, M, Gianazza, M., Alamprese, C. and Stanga, F. (2001). The effect of bleaching and physical refining on color and minor components of palm oil. Journal of the American Oil Chemists’ Society, 78 (10): 1051-1055.

2.       Bhosle, B. M., Subramanian, R. and Ebert, K. (2005). Deacidification of model vegetable oils using polymeric membranes. European Journal of Lipid Science and Technology, 107: 746-753.

3.       Raman, L. P., Cheryan, M. and Rajagopalan, N. (1996). Deacidification of soybean oil by membrane technology. Journal of the American Oil Chemists’ Society, 73(2): 219-224.

4.       Kale, V., Katikaneni, S. P. R. and Cheryan, M. (1999). Deacidification rice bran oil by solvent extraction and membrane technology. Journal of the American Oil Chemists’ Society, 76(6): 723-727.

5.       Kumar, N. S. and Bhowmick, D. N. (1996). Separation of fatty acids/triacylglycerol by membranes. Journal of the American Oil Chemists’ Society, 73(3): 399-401.

6.       Firman, L. R., Ochoa, N. A., Marchese, J. and Pagliero, C. L. (2013). Deacidification and solvent recovery of soybean oil by nanofiltration membranes. Journal of Membrane Science, 431: 187-196.

7.       Vandezande, P., Gevers, L. E. M. and Vankelecom, I. F. J. (2008). Solvent resistant nanofiltration: Separating on a molecular level. Chemical Society Reviews, 37(2): 365-05.

8.       Marchetti, P., Solomon, M. F. J, Szekely, G. and Livingston, A. G. (2014). Molecular separation with organic solvent nanofiltration: A critical review. Chemical Review, 114(21): 10735-10806.

9.       Rundquist, E. M., Pink, C. J. and Livingston, A. G. (2012). Organic solvent nanofiltration: A potential alternative to distillation for solvent recovery from crystallisation mother liquors. Green Chemistry, 14(8): 2197-2205.

10.    Schaepertoens, M., Didaskalou, C., Kim, J. F., Livingston, A. G. and Szekely, G. (2016). Solvent recycle with imperfect membranes: A semi-continuous workaround for diafiltration. Journal of Membrane Science, 514: 646-658.

11.    Dreimann, J. M., Skiborowski, M., Behr, A. And Vorholt, A. J. (2016). Recycling homogeneous catalysts simply by organic solvent nanofiltration: new ways to efficient catalysis. ChemCatChem, 8(21): 3330-3333.

12.    Ghazali, N. F., Ferreira, F. C., White, A. J. P. and Livingston, A. G. (2006). Chiral separation by enantioselective inclusion complexation-organic solvent nanofiltration. Desalination, 199: 398-400.

13.    Kim, J. F., Gaffney, P. R. J., Valtcheva, I. B., Williams, G., Buswell, A. M., Anson, M. S. and Livingston, A.G. (2016).https://www.scopus.com/static/images/s.gifOrganic solvent nanofiltration (OSN): A new technology platform for liquid-phase oligonucleotide synthesis (LPOS). Organic Process Research and Development, 20(8): 1439-1452.

14.    Székely, G., Bandarra, J., Heggie, W., Sellergren, B. and Ferreira, F. C. (2011). Organic solvent nanofiltration: A platform for removal of genotoxins from active pharmaceutical ingredients. Journal of Membrane Science, 381(1): 21-33.

15.    Goncalves, C. B. and Meirelles, A. J. A. (2004). Liquid-liquid equilibrium data for the system palm oil + fatty acid + ethanol + water at 318.2 K. Fluid Phase Equilibria, 221(1-2): 139-150.

16.    Sablani, S. S., Goosen, M. F. A., Al-Belushi, R. and Wilf, M. (2001). Concentration polarization in ultrafiltration and reverse osmosis: A critical review. Desalination, 141(3): 269-289.

17.    Shi, B., Marchetti, P., Peshev, D., Zhang, S. and Livingston, A. (2017). Will ultra-high permeance membranes lead to ultra-efficient processes? challenges for molecular separations in liquid systems. Journal of Membrane Science, 525: 35-47.

18.    Zwijnenberg, H. J., Krosse, A. M., Ebert, K., Peinemeann, K. V. and Cuperus, F. P. (1999). Acetone-stable nanofiltration membranes in deacidifying vegetable oil. Journal of the American Oil Chemist’ Society, 76(1): 83-87.

19.    Whu, J. A., Baltzis, B. C. and Sirkar, K. K. (2000). Nanofiltration studies of larger organic microsolutes in methanol solutions. Journal of Membrane Science, 170(2): 159-172.

 




Previous                    Content                    Next