Malaysian Journal of Analytical Sciences Vol 22 No 3 (2018): 553 - 560

DOI: 10.17576/mjas-2018-2203-24

 

 

 

RAPID SYNTHESIS AND CHARACTERIZATION OF LEAF-LIKE ZEOLITIC IMIDAZOLATE FRAMEWORK

 

(Sintesis Cepat dan Pencirian Kerangka Seperti Daun Imidazolat Zeolitik)

 

Imran Ullah Khan1, 2, 3, Mohd Hafiz Dzarfan Othman1*, Juhana Jaafar1, Haslenda Hashim3, Ahmad Fauzi Ismail1, Mukhlis A Rahman1, Norafiqah Ismail1

 

1Advance Membrane Technology Research Center (AMTEC), Faculty of Chemical and Energy Engineering,

Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia

2School of Chemical and Material Engineering (SCME),

National University of Science and Technology (NUST), H-12, Islamabad, Pakistan

3Process System Engineering Centre (PROSPECT), Faculty of Chemical and Energy Engineering,

Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia

 

*Corresponding author:  hafiz@petroleum.utm.my

 

 

Received: 16 April 2017; Accepted: 7 March 2018

 

 

Abstract

A two-dimensional zeolitic imidazolate framework with a leaf-like structure (ZIF-L) was synthesized in aqueous solution at room temperature with a molar ratio of Zn+2/Hmim (1: 8). Various triethylamine (TEA) concentrations were also used for the rapid production of ZIF-L. Different characterization techniques like X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM) and thermogravimetric analysis (TGA) were performed to investigate the effect of base type additive triethylamine (TEA) on the crystal morphology, crystallinity, particle size and thermal stability of ZIF-L particles. From the experimental results, it was found that ZIF-L with a particle size of 5.3 μm was formed at TEA/total mole ratio of 0, but particle size was decreased when TEA/total mole ratio was increased up to 0.0003. The smallest ZIF-L particles obtained were 3 μm that showed excellent thermal stability. It can be concluded that this promising synthesis method with base-type additive would provide the new insights in the development of ZIFs materials in economical ways.

 

Keywords:  zeolitic imidazolate framework, leaf-like structure, base-type additive, characterization, particle size

 

Abstrak

Kerangka imidazolat zeolitik dua dimensi dengan struktur seperti daun (ZIF-L) telah disintesis dalam larutan akueus pada suhu bilik. Trietilamina (TEA) pelbagai kepekatan juga digunakan untuk penghasilan cepat ZIF-L. Teknik-teknik pencirian yang berbeza seperti pembelauan sinar-X (XRD), mikroskop imbasan elektron pancaran medan (FESEM), mikroskop transmisi elektron (TEM) dan analisis termogravimetri (TGA) telah dijalankan untuk menyiasat kesan jenis asas tambahan trietilamina (TEA) pada morfologi kristal, penghabluran, saiz zarah dan kestabilan haba zarah ZIF-L. Daripada keputusan eksperimen, ianya didapati bahawa ZIF-L dengan saiz zarah 5.3 μm terbentuk pada nisbah molekul TEA/jumlah 0, tetapi saiz zarah berkurangan apabila nisbah TEA/jumlah mol meningkat sehingga 0.0003. Partikel ZIF-L yang terkecil diperoleh adalah 3 μm yang menunjukkan kestabilan terma yang sangat baik. Sebagai kesimpulan, kaedah sintesis cepat ini berpotensi dengan bahan tambahan jenis asas akan memberikan gambaran baru dalam pembangunan bahan ZIF lebih ekonomik.

 

Kata kunci:  kerangka imidazolat zeolitik, struktur seperti daun, asas-jenis bahan tambahan, pencirian, saiz zarah
 

References

1.       Chen, R., Yao, J., Gu, Q., Smeets, S., Baerlocher, C. and Gu, H. (2013). A two-dimensional zeolitic imidazolate framework with a cushion-shaped cavity for CO2 adsorption. Chemical Communications, 49 (1): 9500-9502.

2.       Low, Z. X., Razmjou, A., Wang, K., Gray, S., Duke, M. and Wang, H. (2014). Effect of addition of two-dimensional ZIF-L nanoflakes on the properties of polyethersulfone ultrafiltration membrane. Journal of Membrane Science, 460: 9-17.

3.       Lee, J., Farha, O. K., Roberts, J., Scheidt, K. A., Nguyen, S. T. and Hupp, J. T. (2009). Metal-organic framework materials as catalysts. Chemical Society Reviews, 38(5): 1450-1459.

4.       Yao, J. and Wang, H. (2014). Zeolitic imidazolate framework composite membranes and thin films: Synthesis and applications. Chemical Society Reviews, 43(13): 4470-4493.

5.       Low, Z. X., Yao, J., Liu, Q., He, M., Wang, Z., Suresh, A. K., Bellare, J. and Wang, H. (2014). Crystal transformation in zeolitic-imidazolate framework. Crystal Growth and Design, 14(12): 6589-6598.

6.       Banerjee, R., Furukawa, H., Britt, D., Knobler, C., O’Keeffe, M. and Yaghi, O. M. (2009). Control of pore size and functionality in isoreticular zeolitic imidazolate frameworks and their carbon dioxide selective capture properties. Journal of the American Chemical Society, 131(11): 3875-3877.

7.       Nordin, N. A. H. M., Ismail, A. F., Mustafa, A., Goh, P. S., Rana, D. and Matsuura, T. (2014). Aqueous room temperature synthesis of zeolitic imidazole framework 8 (ZIF-8) with various concentrations of triethylamine. RSC Advances, 4(63): 33292-33300.

8.       Yamamoto, D., Maki, T., Watanabe, S., Tanaka, H., Miyahara, M. T. and Mae, K. (2013). Synthesis and adsorption properties of ZIF-8 nanoparticles using a micromixer. Chemical Engineering Journal, 227: 145-150.

9.       Schlichte, K., Kratzke, T. and Kaskel, S. (2004). improved synthesis, thermal stability and catalytic properties of the metal-organic framework compound Cu3(BTC)2. Microporous and Mesoporous Materials, 73(1): 81-88.

10.    Wen, L., Wang, D. E., Wang, C., Wang, F., Li, D. and Deng, K. (2009). A 3D porous zinc MOF constructed from a flexible tripodal ligand: synthesis, structure, and photoluminescence property. Journal of Solid State Chemistry, 182(3): 574-579.

11.    Biemmi, E., Christian, S., Stock, N. and Bein, T. (2009). High-throughput screening of synthesis parameters in the formation of the metal-organic frameworks MOF-5 and HKUST-1. Microporous and Mesoporous Materials, 117(1): 111-117.

12.    Pan, Y., Liu, Y., Zeng, G., Zhao, L. and Lai, Z. (2011). Rapid synthesis of zeolitic imidazolate framework-8 (ZIF-8) nanocrystals in an aqueous system. Chemical Communications, 47(7): 2071-2073.

13.    Yao, J., He, M. and Wang, H. (2015). Strategies for controlling crystal structure and reducing usage of organic ligand and solvents in the synthesis of zeolitic imidazolate frameworks. CrystEngComm, 17(27): 4970-4976.

14.    Zhong, Z., Yao, J., Low, Z. X., Chen, R., He, M. and Wang, H. (2014). Carbon composite membrane derived from a two-dimensional zeolitic imidazolate framework and its gas separation properties. Carbon, 72: 242-249.

15.    Cravillon, J., Nayuk, R., Springer, S., Feldhoff, A., Huber, K. and Wiebcke, M. (2011). Controlling zeolitic imidazolate framework nano- and microcrystal formation: insight into crystal growth by time-resolved in situ static light scattering. Chemistry of Materials, 23(8): 2130-2141.

16.    He, M., Yao, J., Li, L., Zhong, Z., Chen, F. and Wang, H. (2013). Aqueous solution synthesis of ZIF-8 films on a porous nylon substrate by contra-diffusion method. Microporous and Mesoporous Materials, 179: 10-16.

17.    Pan, Y., Heryadi, D., Zhou, F., Zhao, L., Lestari, G., Su, H. and Lai, Z. (2011). Tuning the crystal morphology and size of zeolitic imidazolate framework-8 in aqueous solution by surfactants. CrystEngComm, 13(23): 6937-6940.

18.    He, M., Yao, J., Liu, Q., Wang, K., Chen, F. and Wang, H. (2014). Facile synthesis of zeolitic imidazolate framework-8 from a concentrated aqueous solution. Microporous and Mesoporous Materials, 184: 55-60.

19.    Hu, Y., Kazemian, H., Rohani, S., Huang, Y. and Song, Y. (2011). In situ high pressure study of ZIF-8 by FTIR spectroscopy. Chemical Communications, 47(47): 12694-12696.

20.    Jian, M., Liu, B., Liu, R., Qu, J., Wang, H. and Zhang, X. (2015). Water-based synthesis of zeolitic imidazolate framework-8 with high morphology level at room temperature. RSC Advances, 5(60): 48433-48441.

 




Previous                    Content                    Next