Malaysian Journal of Analytical Sciences Vol 23 No 1 (2019): 23 - 30

DOI: 10.17576/mjas-2019-2301-03

 

 

 

WATER EXTRACT OF ONION PEEL ASH: AN EFFICIENT GREEN CATALYTIC SYSTEM FOR THE SYNTHESIS OF ISOINDOLINE-1,3-DIONE DERIVATIVES

 

(Air Abu Kulit Bawang: Sistem Pemangkin Katalitik Hijau yang Effisien dalam Sintesis Terbitan Isoindolina-1,3-dion)

 

Poh Wai Chia1,2*, Poh Seng Chee1, Mohd Haziq Aziz1, Siti Aisha Mohd Radzi2, Fu Siong Julius Yong2, Su-Yin Kan3

 

1School of Marine and Environmental Sciences

2Institute of Marine Biotechnology

Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia

3Faculty of Health Sciences,

Universiti Sultan Zainal Abidin, 21300 Kuala Nerus, Terengganu, Malaysia.

 

*Corresponding author:  pohwai@umt.edu.my

 

 

Received: 2 July 2018; Accepted: 27 November 2018

 

 

Abstract

Isoindoline-1,3-dione derivatives are important organic compounds associated with various interesting applications such as in the fields of material science, medicine, important building blocks and so on. Traditionally, the synthesis of isoindoline-1,3-dione derivatives are achieved using harmful and toxic catalysts, such as concentrated sulphuric acid, triphenylphosphine, ionic liquid [bmim][BF4] or phthalimide-N-sulfonic acid. Thus, the development of a greener catalytic system for the synthesis of isoindoline-1,3-dione derivatives is highly sought after. In this work, an efficient synthesis of isoindoline-1,3-dione derivatives using the Water Extract of Onion Peel Ash (WEOPA) method is described. The new approach provides several advantages including the non-usage of external acids, recyclable catalytic system, cheap and the yield of the synthesized products were obtained in moderate to good yields by reacting various anilines with phthalic anhydride. The current improved method is scientifically important, due to it avoid the use of environmental harmful reagents and at the same time provides an alternative method for bio-waste management.

 

Keywords:  water extract of onion peel ash, isoindoline-1,3-dione, recyclable catalytic system, anilines, phthalic anhydride

 

Abstrak

Terbitan isoindolina-1,3-dion adalah sebatian organik yang penting dan dikaitkan dengan pelbagai aplikasi yang menarik, seperti dalam bidang sains bahan, perubatan, blok bangunan penting dan sebagainya. Secara tradisinya, sintesis derivatif isoindolina-1,3-dion dicapai dengan menggunakan pemangkin berbahaya dan beracun, seperti asid sulfurik pekat, trifenilfosfin, cecair ionik [bmim] [BF4] atau asid fitalimid-N-sulfonik. Oleh itu, pembangunan sistem pemangkin yang lebih hijau untuk sintesis derivatif isoindolina-1,3-dion sangat diperlukan. Dalam kerja ini, satu kaedah effisien dalam sintesis terbitan isoindolina-1,3-dion dengan menggunakan ekstrak air abu bawang dibincangkan disini. Kaedah baru ini memberikan pelbagai manfaat termasuk bebas daripada penggunaan asid luaran, sistem pemangkin kitar semula, murah dan hasil bagi produk sintesis yang didapati adalah sederhana hingga baik melalui tindak balas antara anilin-anilin dengan fitalik anhidrit. Kaedah yang ditambahbaik ini adalah penting secara saintifik, kerana ia mengelakkan penggunaan reagen berbahaya kepada alam sekitar dan pada masa yang sama menyediakan kaedah alternatif untuk pengurusan bio-sisa.

 

Kata kunci:  ekstrak air abu bawang merah, isoindolina-1,3-dion, system pemangkin kitar semula, anilin, fitalik anhidrit

 

References

1.          Chassaing, S. and Beneteau, V. (2017). Zeolite as green catalysts for organic synthesis: The cases of H-, Cu-& Sc-zeolites. Current Organic Chemistry, 21(9): 779-793.

2.          Andersen, J. and Mack, J. (2018). Mechanochemistry and organic synthesis:from mystical to practical. Green Chemistry, 20(7): 1435-1443.

3.          Kan, S.-Y., Yiong, W. S., Yong, F. S. J. and Chia, P.W. (2017). Synthesis of benzothiazole derivatives using ultrasound probe irradiation. Malaysian Journal of Analytical Sciences, 21(6): 1219-1225.

4.          Asseri, S. N. A. R. M., Tan, S. H., Mohamad, W. N. K. W., Poh, S. C., Chia, P. W., Kan, S.-Y. and Chuah, T. S. (2017). MgCl2 as efficient and inexpensive catalyst for the synthesis of 1,4-dihydropyridine derivatives. Malaysian Journal of Analytical Sciences, 21(1): 13-19.

5.          Waseem, M. A., Srivasta, A., Srivasta, A. and Siddiqui, I. (2015). Water and ionic liquid synergy. A novel approach for the synthesis of benzothiazole-2 (3H)-one.  Journal of Saudi Chemical Society, 35(1): 68-82.

6.          Li, C.-J. and Chen, L. (2006). Organic chemistry in water. Chemical Society Review,  35(1): 68-82.

7.          Kucherenjo, A., Kostenko, A., Zhdankina, G. M., Kuznetsova, O. Y. and Zlotin, S. G. (2018). Green asymmetric synthesis of Warfarin and Coumachlor in pure water catalyzed by quinoline-derived 1,2-diamines. Green Chemistry, 20(3): 754-759. 

8.          Han, M. Y., Lin, J., Li, W., Luan, W. Y., Mai, P. L. and Zhang, Y. (2018). Catalyst-free nucleophilic addition reactions of silyl glyoxylates in water. Green Chemistry, 20(6): 1228-1232.

9.          Noshiranzadeh, N., Emami, M., Bikas, R. and Kozakiewicz, A. (2017). Green click synthesis of β-hydroxy-1, 2, 3-triazoles in water in the presence of a Cu (II)–azide catalyst: a new function for Cu (II)–azide complexes. New Journal of Chemistry,  41(7): 2658-2667.

10.        Banerjee, B. (2017). Recent developments on ultrasound assisted catalyst-free organic synthesis. Ultrasonics Sonochemistry, 35: 1-14.

11.        Miklós, F. and Fülöp, F. (2016). A simple green protocol for the condensation of anthranilic hydrazide with cyclohexanone and nbenzylpiperidinone in water. Jornal of Heterocyclic Chemistry, 53(1): 32-37.

12.        Sarmah, M., Mondal, M. and Bora, U. (2017). Agrowaste extract based solvents: emergence of novel green solvent for the design of sustainable processes in catalysis and organic chemistry. ChemistrySelect,  2(18): 5180-5188.

13.        Boruah, R. P., Abdul, A. A.,  Mitali, C.,  Bishwajit, S.  and  Diganta, S. (2015). Pd(OAc)2 in WERSA: A novel green catalytic system for Suzuki–Miyaura cross-coupling reactions at room temperature. Chemical Communications, 51(57): 11489-11492.

14.        Saikia, B., Boruah, P. R., Ali, A. A. and Sarma, D. (2015). ‘On-water’organic synthesis: a green, highly efficient, low cost and reusable catalyst system for biaryl synthesis under aerobic conditions at room temperature. RSC Advances, 5(63): 50655-50659.

15.        Dewan, A., Sarmah, M., Bora, U. and Thakur, A. J. (2016). A green protocol for ligand, copper and base free Sonogashira cross-coupling reaction. Tetrahedron Letters, 57(33): 3760-3763.

16.        Surneni, N., Barua, N. C. and Saikia, B. (2016). Application of natural feedstock extract: The Henry reaction. Tetrahedron Letters,  57(25): 2814-2817.

17.        Saikia, B. and Borah, P. (2015). A new avenue to the Dakin reaction in H2O2–WERSA. RSC Advances,  5(128): 105583-105586.

18.        Choi, I. S., Cho, E. J., Moon, J.-H. and Bae, H.-J. (2015). Onion skin waste as a valorization resource for the by-products quercetin and biosugar. Food Chemistry, 188: 537-542.

19.        Marshall, R. E. and Farahbakhsh, K. (2013). Systems approaches to integrated solid waste management in developing countries. Waste Management, 33(4): 988-1003.

20.        Nile, S. H. and Park, S. W. (2013). Total phenolics, antioxidant and xanthine oxidase inhibitory activity of three colored onions (Allium cepa L.). Frontier in Life Science, 7(3-4): 224-228.

21.        Sharma, K., Mahato, N., Nile, S. H., Lee, E. T. and Lee, Y. R. (2016). Economical and environmentally-friendly approaches for usage of onion (Allium cepa L.) waste. Food Function, 7(8): 3354-3369.

22.        Gao, S., Li, L., Geng, K., Wei, X. and Zhang, S. (2015). Recycling the biowaste to produce nitrogen and sulfur self-doped porous carbon as an efficient catalyst for oxygen reduction reaction. Nano Energy,  16(2015): 408-418.

23.        Pontrello, J. K., Allen, M. J., Underbakker, E. S. and Kiessling, L. L. (2005). Solid-phase synthesis of polymers using the ring-opening metathesis polymerization. Journal of  American Chemical Society,  127(42): 14536-14537.

24.        Sortino, M., Garibotto, F., Fihlo, V. C., Gupta, M., Enriz, R. and Zacchino, S. (2011). Antifungal cyctotoxic and SAR studies of a series of N-alkyl, N-aryl and N-alkylphenyl-1,4-pyrroledinones and related compounds. Bioorganic Medicinal Chemistry, 19(9): 2823-2834.

25.        Bouissane, L., Sestelo, J. P. and Sarandeses, L. A. (2009). Synthesis of 3,4-disubstituted maleimides by selective cross-coupling reactions using indium organometallics. Organic Letters, 11(6): 1285-1288.

26.        Hurd, C.D. and Prapas, A.G. (1959). Preparation of acylcic imides. Journal of  Organic Chemistry, 24(3): 388-392.

27.        Walker, M. A. (1995). A high yielding synthesis of N-alkyl maleimides using a novel modification of the Mitsunobu reaction. Journal of Organic Chemistry, 60(16): 5352-555.

28.        Chen, D. C., Ye, H. Q. and Wu, H. (2007). A more efficient synthetic process of N-arylphthalimides in ionic liquid [bmim][BF4]. Catalysis Communications, 8(10): 1527-1530.

29.        Habibi, D. and Pordanjani, H. M. (2017). Phthalimide-N-sulfonic acid, an efficient catalyst for the synthesis of various isoindoline-1,3-dione derivatives. Chemical Papers, 71(11): 2293-2299.

 




Previous                    Content                    Next