Malaysian Journal of Analytical Sciences Vol 23 No 1 (2019): 14 - 22

DOI: 10.17576/mjas-2019-2301-02






(Kaedah Spektrofotometrik Ultra Violet-Cahaya Nampak Baharu untuk Penentuan Akrilamida Secara Kuantitatif Melalui Proses Hidrolisis)


Yee-May Chong1, Musa Ahmad2*, Lee Yook Heng1


1School of Chemical Sciences and Food Technology, Faculty Sciences & Technology,

Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Malaysia

2Industrial Chemical Technology Programme, Faculty Sciences & Technology,

Universiti Sains Islam Malaysia, 71800 Nilai, Malaysia


*Corresponding author:



Received: 5 August 2018; Accepted: 8 December 2018




This paper reported the results for quantitative determination of acrylamide via hydrolysis process using ultra violet-visible (UV-Vis) spectrophotometric method. This quantitative determination started with hydrolysing acrylamide in a strong basic condition to yield ammonia and acid salt. The optimum conditions of hydrolysis (concentration of the base used and time for hydrolysis) were also determined. From this study, the optimum conditions to hydrolyse acrylamide were achieved using 6.0 M of sodium hydroxide (NaOH) for 10 minutes. The hydrolysis process was characterised by monitoring the ammonia produced using Nessler’s reagent through the formation of yellow colouration in the presence of ammonia. After the optimisation of hydrolysis process, the characterisation of all parameters including concentration of Nessler’s reagent used, reproducibility, dynamic range, and interference ions were studied. Linear dynamic ranges from 0-10 ppm acrylamide with limit of detection (LOD) of 0.074 ppm were obtained when 3.0 mM Nessler’s reagent was used. The relative standard deviations (RSD) for reproducibility were 2.8-3.3%. No significant interference from cations such as Na+, K+, Ca2+ during quantitative analysis of acrylamide, but ions such as Fe3+ and NH3 affected the analysis.


Keywords:  acrylamide, hydrolysis, Nessler’s reagent



Kajian ini melaporkan keputusan untuk penentuan kuantitatif akrilamida melalui proses hidrolisis dengan kaedah spektofotometrik UV-Nampak (UV-Vis). Penentuan kuantitatif ini dimulai dengan hidrolisis akrilamida dalam keadaan bes kuat dan menghasilkan ammonia dan garam asid sebagai hasil. Keadaan optimum hidrolisis seperti kepekatan bes yang digunakan serta masa hidrolisis optimum telah ditentukan. Daripada kajian, keadaan hidrolisis akrilamida yang optimum ialah menggunakan natrium hidroksida (NaOH) 6.0 M dan masa tindak balas selama 10 minit. Proses hidrolisis telah dicirikan dengan memantau ammonia yang terhasil menggunakan reagen Nessler yang akan menghasilkan warna kuning dengan kehadiran ammonia. Setelah mengoptimumkan proses hidrolisis, pencirian semua parameter termasuk kepekatan reagen Nessler yang digunakan, kebolehulangan, julat dinamik, dan ganguan ion telah dikaji. Julat dinamik linear daripada 0-10 ppm akrilamida dengan had pengesanan (LOD) 0.074 ppm telah diperolehi apabila reagen Nessler 3.0 mM digunakan. Sisihan piawai relatif (RSD) untuk kebolehulangan telah diperolehi pada julat 2.8-3.3%. Kation seperti Na+, K+, Ca2+ tidak memberikan gangguan yang ketara pada analisis kuantitatif akrilamida, tetapi ion seperti Fe3+ and NH3 telah mengganggu analisis ini.


Kata kunci:  akrilamida, hidrolisis, reagen Nessler



1.          Tareke, E., Rydberg, P., Karlsson, P., Eriksson, S. and Törnqvist, M. (2002). Analysis of acrylamide, a carcinogen  formed  in  heated  foodstuffs.  Journal of Agricultural and Food Chemistry, 50: 4998-5006.

2.          Zyzak, D. V., Sanders, R. A., Stojanovic, M., Tallmadge, D. H., Eberhart, B. L., Ewald, D. K., Gruber, D. C., Morsch, T. R., Strothers, M. A., Rizzi, G. P. and Villagran, M. D. (2003). Acrylamide formation mechanism in heated foods. Journal of Agricultural and Food Chemistry, 51: 4782-4787.

3.          Erickson, B. E. (2004). Finding acrylamide. Analytical Chemistry, 76: 247A-248A.

4.          Dybing, E., Farmer, P. B., Andersen, M., Fennell, T. R., Lalljie, S. P. D., Müller, D. J. G., Olin, S., Petersen, B. J., Schlatter, J., Scholz, G., Scimeca, J. A., Slimani, N., Törnqvist, M., Tuijtelaars, S. and Verger, P. (2005). Human exposure and internal dose assessments of acrylamide in food. Food and Chemical Toxicology, 43: 365-410.

5.          IARC (1994). International Agency for Research on Cancer, Lyon, France: pp. 389-433.

6.          Preston, A., Fodey, T. and Elliott, C. (2008). Development of a high-throughput enzyme-linked immunosorbent assay for the routine detection of the carcinogen acrylamide in food, via rapid derivatisation pre-analysis. Analytica Chimica Acta, 608: 178-185.

7.          Zhou, S., Zhang, C., Wang, D. and Zhao, M. (2008). Antigen synthetic strategy and immunoassay development for detection of acrylamide in foods. Analyst, 133: 903-909.

8.          Hu, Q., Xu, X., Li, Z., Zhang, Y., Wang, J., Fu, Y. and Li, Y. (2014). Detection of acrylamide in potato chips using a fluorescent sensing method based on acrylamide polymerization-induced distance increase between quantum dots. Biosensors and Bioelectronics, 54: 64-71.

9.          Stobiecka, A., Radecka, H. and Radecki, J. (2007). Novel voltammetric biosensor for determining acrylamide in food samples. Biosensors and Bioelectronics, 22: 2165-2170.

10.        Krajewska, A., Radecki, J. and Radecka, H. (2008). A voltammetric biosensor based on glassy carbon electrodes modified with single-walled carbon nanotubes/hemoglobin for detection of acrylamide in water extracts from potato crisps. Sensors, 8: 5832-5844.

11.        Garabagiu, S. and Mihailescu, G. (2011). Simple hemoglobin–gold nanoparticles modified electrode for the amperometric detection of acrylamide. Journal of Electroanalytical Chemistry, 659: 196-200.

12.        Batra, B., Lata, S., Sharma, M. and Pundir, C. S. (2013). An acrylamide biosensor based on immobilization of hemoglobin onto multiwalled carbon nanotube/copper nanoparticles/polyaniline hybrid film. Analytical Biochemistry, 433: 210-217.

13.        Batra, B., Lata, S. and Pundir, C. S. (2013). Construction of an improved amperometric acrylamide biosensor based on hemoglobin immobilized onto carboxylated multi-walled carbon nanotubes/iron oxide nanoparticles/chitosan composite film. Bioprocess and Biosystems Engineering, 36: 1591-1599.

14.        Silva, N., Gil, D., Karmali, A. and Matos, M. (2009). Biosensor for acrylamide based on an ion-selective electrode using whole cells of Pseudomonas aeruginosa containing amidase activity. Biocatalysis and Biotransformation, 27: 143-151.

15.        Silva, N. A. F., Matos, M. J., Karmali, A. and Racha, M. M. (2011). An electrochemical biosensor for acrylamide detection: Merits and limitations. Portugaliae Electrochimica Acta, 29: 361-373.

16.        Ignatov, O. V., Rogatcheva, S. M., Vasil'eva, O. V. and Ignatov, V. V. (1996). Selective determination of acrylonitrile, acrylamide and acrylic acid in waste waters using microbial cells. Resources, Conservation and Recycling, 18: 69-78.

17.        Ignatov, O. V., Rogatcheva, S. M., Kozulin, S. V. and Khorkina, N. A. (1997). Acrylamide and acrylic acid determination using respiratory activity of microbial cells. Biosensors and Bioelectronics, 12: 105-111.

18.        Hasegawa, K., Miwa, S., Tajima, T., Tsutsumiuchi, K., Taniguchi, H. and Miwa, J. (2007). A rapid and inexpensive method to screen for common foods that reduce the action of acrylamide, a harmful substance in food. Toxicology Letters, 175: 82-88.

19.        Qiu, Y., Qu, X., Dong, J., Ai, S. and Han, R. (2011). Electrochemical detection of DNA damage induced by acrylamide and its metabolite at the graphene-ionic liquid-Nafion modified pyrolytic graphite electrode. Journal of Hazardous Materials, 190: 480-485.

20.        Li, D., Xu, Y., Zhang, L. and Tong, H. (2014). A label-free electrochemical bopsensor for acrylamide based on DNA immobilized on graphene oxide-modified glassy carbon electrode. International Journal of Electrochemical Science, 9: 7217-7227.

21.        Sun, X., Ji, J., Jiang, D., Li, X., Zhang, Y., Li, Z. and Wu, Y. (2013). Development of a novel electrochemical sensor using pheochromocytoma cells and its assessment of acrylamide cytotoxicity. Biosensors and Bioelectronics, 44: 122-126.

22.        Paleologos, E. K. and Kontominas, M. G. (2005). Determination of acrylamide and methacrylamide by normal phase high performance liquid chromatography and UV detection. Journal of Chromatography A, 1077: 128-135.

23.        Chong, Y.-M., Ahmad, M., Heng, L. Y., Kusnin, N. and Shukor, M. Y. A. (2017). Acrylamide optical sensor based on hydrolysis using Bacillus sp. strain ZK34 containing amidase properties. Sains Malaysiana, 46: 1557-1563.



Previous                    Content                    Next