Sains Malaysiana 49(11)(2020): 2609-2623

http://dx.doi.org/10.17576/jsm-2020-4911-01

 

Intraspecific Phenotypic Variation in Nearly Threatened Mottled Nandus, Nandus nandus(Hamilton, 1822)

(Variasi Fenotip Intrakhusus Patung Belang Nandus yang Hampir Terancam, Nandus nandus (Hamilton, 1822))

 

MD. SAROWER-E-MAHFUJ1, MD. ABDUS SAMAD1, FEE FAYSAL AHMED2, MD. ABDUL ALIM1, YOSNI BAKAR3 & SIMON KUMAR DAS3,4*

 

1Department of Fisheries and Marine Biosciences, Jashore University of Science and Technology, Jashore-7408, Bangladesh

 

2Department of Mathematics, Jashore University of Science and Technology, Jashore-7408, Bangladesh

 

3Department of Earth Sciences and Environment, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

4Marine Ecosystem Research Center, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

Received: 12 February 2018/Accepted: 22 May 2020

 

ABSTRACT

Understanding intraspecific phenotypic plasticity is a prerequisite of stock identification, evolutionary studies, sustainable utilization, and fishery conservation. In this study, intraspecific phenotypic plasticity was assessed in terms of the external features (i.e. meristic, morphometric, and truss-based morphometrics) of the wild Nandus populations from four freshwater sources in Southwestern Bangladesh. Fish samples were collected from Arial Kha River, Madaripur (AKRM, n=26); Nabaganga River, Jhenaidah (NRJ, n=22); Bohnni Baor, Gopalganj (BBG, n=26); and Dhakuria Beel, Jashore (DBJ, n=22). Meristic, morphometric, and truss network data were subjected to one-way ANOVA followed by post hoc (Tukey-HSD) test. The meristic counts of all the samples demonstrated significant differences only in one of the six characters. By contrast, significant differences were observed in 8 morphometric characters and 31 truss network data from 16 morphometric characters and 35 truss network data, respectively. Principal component (PCA) and canonical variate analyses (CVA) were also performed on morphometric and truss-based network data. Meristic and morphometric results from PCA and CVA showed that populations were completely intermingled, forming a compact cluster within intrapopulation levels, while truss morphometric characters formed a separate cluster. Three dendrograms independently based on phenotypic relationships among the individuals of the four populations also confirmed the absence of phenotypic differentiation among the population due to clustering of different groups. The baseline information resulting from the current study would be useful for genetic studies and further in situ conservation of Nandus populations in Bangladesh.

 

Keywords: Canonical variate analysis; freshwater; morphometric; meristic; nandus; principle component analysis; Truss morphometry

 

ABSTRAK

Memahami keplastikan fenotip intrakhusus adalah satu pra-syarat untuk mengenal pasti stok, kajian evolusi dan pemanfaatan lestari dan pemuliharaan dalam perikanan. Dalam kajian ini kepelbagaian fenotip intrakhusus dinilai dari segi ciri luaran (iaitu meristik, morfometri dan morfometri dasarkan truss) daripada populasi liar ikan nandus dari empat sumber air tawar di selatan-barat Bangladesh. Sampel ikan dikumpulkan dari Arial Kha River, Madaripur (AKRM), (n = 26); Sungai Nabaganga, Jhenaidah (NRJ), (n = 22); Bohnni Baor, Gopalganj (BBJ), (n = 26); dan Dhakuria Beel, Jashore (DBJ), (n = 22). Data meristik, morfometri dan rangkaian truss dianalisis menggunakan varians satu arah (ANOVA) diikuti dengan ujian Post-hoc (Tukey-HSD). Perhitungan meristik untuk kesemua sampel menunjukkan perbezaan yang signifikan hanya dalam satu ciri daripada enam ciri manakala perbezaan yang signifikan diperhatikan dalam 8 ciri morfometrik dan 31 rangkaian data truss masing-masing daripada 16 ciri morfometrik dan 35 rangkaian data truss. Di samping itu, analisis komponen utama (PCA) dan analisis fungsi diskriminasi (CVA) dilakukan dengan menggunakan morfometrik dan data rangkaian berasaskan truss. Hasil daripada PCA dan CVA menunjukkan populasi terpisah sepenuhnya serta membentuk kelompok yang padat dalam tahap intra-populasi. Tiga dendrogram secara bebas berdasarkan hubungan fenotip antara individu daripada empat populasi dibina. Populasi NRJ, BBG dan DBJ membentuk populasi kumpulan masing-masing berdasarkan meristik, morfometrik dan truss morfometrik. Maklumat asas yang dihasilkan daripada kajian semasa adalah mudah untuk kajian genetik dan pemuliharaanpopulasi Nandus secara in situ di Bangladesh.

 

Kata kunci: Air tawar; analisis fungsi diskriminasi; meristik; morfometrik; morfometri Truss; nandus

 

REFERENCES

Ahmed, M.S. 2008. Assessment of fishing practices on the exploitation of the Titas floodplain in Brahmanbaria, Bangladesh. Turkish Journal of Fisheries and Aquatic Sciences 8(2): 329-334.

Agarwal, V.P. & Sharma, K.U. 1966. Studies on the physiology of digestion in Nandus nandus (Ham.). Proceedings of the Indian Academy of Sciences 64: 157-168.   

Akbarzadeh, A., Facxsarahmand, H., Shabani, A.A., Karami, M., Kaboli, M., Abbasi, K. & Rafiee, G.R. 2009. Morphological variation of the pikeperch Sander lucioperca (L.) in the southern Caspian Sea, using a truss system. Journal of Applied Ichthyology 25(5): 576-582.

Allendorf, F.W. & Phelps, S.R. 1988. Loss of genetic variation in a hatchery stock of cutthroat trout. Transactions of the American Fisheries Society 109(5): 537-543.

Allendorf, F.W., Ryman, N. & Utter, F. 1987. Genetics and fishery management: Past, present and future in population genetics and fisheries management. In Population Genetics and Fishery Management, edited by Ryman, N. & Utter, F. Washington: University of Washington Press. pp. 1-20.

Başusta, A., Özer, E.I., Girgin, H., Serdar, O. & Başusta, N. 2014. Length-weight relationship and condition factor of Hippocampus hippocampus and Hippocampus guttulatus inhabiting Eastern Black Sea. Pakistan Journal of Zoology 46(2): 447-450.

Cadrin, S.X. 2000. Advances in morphometric identification of fishery stocks. Reviews in Fish Biology and Fisheries 10(1): 91-112.

Cadrin, S.X. & Friedland, K.D. 1999. The utility of image processing techniques for morphometric analysis and stock identification. Fisheries Research 43(1): 129-139.

Chakrabarty, P., Oldfield, R.G. & Ng, H.H. 2006. Nandus prolixus, a new species of leaf fish from northeastern Borneo (Teleostei: Perciformes: Nandidae). Zootaxa 1328: 51-61.

Chowdhury, G.W. 2015. Nandus nandus. The IUCN Red List of Bangladesh. Volume 5: Freshwater Fishes. Dhaka: IUCN, International Union for Conservation of Nature, Bangladesh Country Office.

Crispo, E. 2008. Modifying effects of phenotypic plasticity on interactions among natural selection, adaptation and gene flow. Journal of Evolutionary Biology 21(6): 1460-1469.

Das, M. & Zamal, N. 2000. Domestication of an endangered fish species Nandus nandus (Ham.) pt. 1. Laboratory rearing of young fish up to sexual maturity. Bangladesh Journal of Fisheries Research 4(2): 135-140.

Eklöv, P. & Svanbäck, R. 2005. Predation risk influences adaptive morphological variation in fish populations. The American Naturalist 167(3): 440-452.

Elliott, N.G., Haskard, K. & Koslow, J.A. 1995. Morphometric analysis of orange roughy (Hoplostethus atlanticus) off the continental slope of southern Australia. Journal of Fisheries Biology 46(1): 202-220.

Gain, D., Mahfuj, M.S., Huq, K.A., Islam, S.S., Minar, M.H., Goutham-Bharathi, M.P. & Das, S.K. 2017. Landmark-based morphometric and meristic variations of endangered mrigal carp, Cirrhinus cirrhosus (Bloch 1795), from wild and hatchery stocks. Sains Malaysiana 46(5): 695-702.

Goswami, S. & Dasgupta, M. 2007. Analysis of the morphometric and meristic characters of the fish Nandus nandus (Hamilton) from the new alluvial zone of West Bengal. Records of the Zoological Survey of India 107: 81-90.

Hamilton, F. 1822. An Account of the Fishes Found in the River Ganges and Its Branches. Uttarakhand: Bishen Singh Mahendra Pal Singh.

Hood, C.S. & Heins, D.C. 2000. Ontogeny and allometry of body shape in the blacktail shiner, Cyprinella venustaCopeia 2000(1): 270-275.

Hossain, M.A., Nahiduzzaman, M., Saha, D., Khanam, M.U.H. & Alam, M.S. 2010. Landmark-based morphometric and meristic variations of the endangered carp, Kalibaus Labeo calbasu, from stocks of two isolated rivers, the Jamuna and Halda, and a hatchery. Zoological Studies 49(4): 556-563.

Hossain, M.S. & Sarker, S. 2013. New species of leaf fish Nandus meni (Perciformes: Nandidae) from Noakhali, Bangladesh. Zoology and Ecology 23(3): 191-197.

Kahilainen, K. & Østbye, K. 2006. Morphological differentiation and resource polymorphism in three sympatric whitefish Coregonus lavaretus (L.) forms in a subarctic lake. Journal of Fish Biology 68(1): 63-79.

Kaiser, H.F. 1974. An index of factorial simplicity. Psychometrika 39: 31-36.

Kalhoro, M.A., Liu, Q., Valinassab, T., Waryani, B., Abbasi, A.R. & Memon, K.H. 2015. Population dynamics of greater lizardfish, Saurida tumbil from Pakistani waters. Pakistan Journal of Zoology 47(4): 921-935.

Kocovsky, P.M., Adams, J.V. & Bronte, C.R., 2009. The effect of sample size on the stability of principal component analysis of truss-based fish morphometrics. Transaction of American Fisheries Society 138: 487-496.

Langerhans, R.B. 2008. Predictability of phenotypic differentiation across flow regimes in fishes. Integrative and Comparative Biology 48(6): 750-768.

Lindsey, C.C. 1988. 3 factors controlling meristic variation. Fish Physiology. Vol. 11. pp. 197-274. Massachusetts: Academic Press.

Mahfuj, M.S., Khatun, A., Boidya, P. & Samad, M. 2019a. Meristic and morphometric variations of barred spiny eel Macrognathus pancalus populations from Bangladeshi freshwaters: An insight into landmark-based truss network system. Croatian Journal of Fisheries: Ribarstvo 77(1): 7-18.

Mahfuj, M.S., Rahman, M.M., Islam, M., Samad, M.A., Paul, A.K. & Adhikary, R.K. 2019b. Landmark-based morphometric and meristic variations of freshwater garfish, Xenentodon cancila from four natural stocks of South-Western Bangladesh. Journal of Advanced Veterinary and Animal Research 6(1): 117-124.

Mahfuj, S.E., Rahman, S.U. & Samad, A. 2019c. Landmark-based truss morphometrics delineate the stock structure of Lepidocephalichthys guntea. Journal of Fisheries and Aquatic Science 14(1): 25-32.

Mahfuj, S., Ashraful, M.A., Parvez, I., Minar, M.H. & Samad, A. 2017. Morphological variations of Labeo bata populations (Teleostei: Cyprinidae) in six rivers of Bangladesh: A landmark-morphometric contribution. Iranian Journal of Ichthyology 4(3): 270-280.

McGarigal, K., Cushman, S. & Stafford, S. 2000. Multivariate Statistics for Wildlife and Ecology Research. New York: Springer Verlag.

Mir, J.I., Sarkar, U.K., Dwivedi, A.K., Gusain, O.P. & Jena, J.K. 2013. Stock structure analysis of Labeo rohita (Hamilton, 1822) across the Ganga basin (India) using a truss network system. Journal of Applied Ichthyology 29(5): 1097-1103.

Mustafa, G., Ahmed, A.T.A. & Islam, K.R. 1980. Food, feeding habits and fecundity of a freshwater perch, meni fish. Bangladesh Journal of Agriculture 5(4): 205-210.

Nakamura, T. 2003. Meristic and morphometric variations in fluvial Japanese charr between river systems and among tributaries of a river system. Environmental Biology of Fishes 66(2): 133-141.

Ng, H.H., Vidthayanon, C. & Ng, P. 1996. Nandus oxyrhynchus, a new species of leaf fish (Teleostei: Nandidae) from the Mekong Basin. The Raffles Bulletin of Zoology 44(1): 11-19. 

Okomoda, T.V., Koh, I.C.C., Hassan, A., Amornsakun, T. & Shahreza, S.M. 2018a. Morphological characterization of the progenies of pure and reciprocal crosses of Pangasianodon hypophthalmus (Sauvage, 1878) and Clarias gariepinus (Burchell, 1822). Scientific Reports 8(1): 1-13.

Okomoda, V.T., Koh, I.C.C., Hassan, A., Amornsakun, T. & Shahreza, M.S. 2018b. Performance and characteristics of the progenies from the crosses of Pangasianodon hypophthalmus(Sauvage, 1878) and Clarias gariepinus (Burchell, 1822). Aquaculture 489(3): 96-104.

Oufiero, C.E. & Whitlow, K.R. 2016. The evolution of phenotypic plasticity in fish swimming. Current Zoology 62(5): 475-488.

Parsons, K.J., McWhinnie, K., Pilakouta, N. & Walker, L. 2020. Does phenotypic plasticity initiate developmental bias? Evolution & Development 22(1-2): 56-70.

Rahman, A.K.A. 2005. Freshwater Fishes of Bangladesh. 2nded. pp. 394. Dhaka: University of Dhaka.

Rohlf, F.J. 2006. TPS Software Series. New York: Department of Ecology and Evolution, State University of New York, Stony Brook.

Ross, N., Islam, M.M. & Thilsted, S.H. 2003. Small indigenous fish species in Bangladesh: Contribution to vitamin A, calcium and iron intakes. The Journal of Nutrition 133(11): 4021S-4026S.

Saborido-Rey, F. & Nedreaas, K.H. 2000. Geographic variation of Sebastes mentella in the Northeast Arctic derived from a morphometric approach. ICES Journal of Marine Science 57(4): 965-975.

Simon, K.D., Bakar, Y., Temple, S.E. & Mazlan, A.G. 2010. Morphometric and meristic variation in two congeneric archer fishes Toxotes chatareus (Hamilton 1822) and Toxotes jaculatrix (Pallas 1767) inhabiting Malaysian coastal waters. Journal of Zhejiang University Science B 11(11): 871-879.

Silva, S.E., Silva, I.C., Madeira, C., Sallema, R., Paulo, O.S. & Paula, J. 2013. Genetic and morphological variation in two littorinid gastropods: Evidence for recent population expansions along the East African coast. Biological Journal of the Linnean Society 108(3): 494-508.

Solomon, S.G., Okomoda, V.T. & Ogbenyikwu, A.I. 2015. Intraspecific morphological variation between cultured and wild Clarias gariepinus (Burchell) (Clariidae, Siluriformes). Archives of Polish Fisheries 23(1): 53-61.

Stearns, S.C. 1983. A natural experiment in life-history evolution: field data on the introduction of mosquito fish (Gambusia affinis) to Hawaii. Evolution 37(3): 601-617.

Strauss, R.E. & Bookstein, F.L. 1982. The truss: Body form reconstructions in morphometricsSystematic Biology 31(2): 113-135.

Svanbäck, R. & Eklöv, P. 2002. Effects of habitat and food resources on morphology and ontogenetic growth trajectories in perch. Oecologia 131(1): 61-70.

Trabelsi, M. 2002. Le complexe Atherina boyeri. Caractérisation biométrique, biochimique et génétique. Mise en de deux nouvelles espèces d’athérines dans le méditerranéen. Université de Tunis 291.

Turan, C., Yalçin, S., Turan, F., Okur, E. & Akyurt, I. 2005. Morphometric comparisons of African catfish, Clarias gariepinus, populations in Turkey. Folia Zoologica 54(1/2): 165-172.

Turan, C., Ergüden, D., Gürek, M. & Turan, F. 2004. Genetic and morphologic structure of Liza abu (Heckel, 1843) populations from the rivers Orontes, Euphrates and Tigris. Turkish Journal of Veterinary and Animal Sciences 28(4): 729-734.

Walsh, M.G., Bain, M.B., Squiers, T., Waldman, J.R. & Wirgin, I. 2001. Morphological and genetic variation among shortnose sturgeon Acipenser brevirostrum from adjacent and distant rivers. Estuaries 24(1): 41-48.

Webster, M. & Sheets, H.D. 2010. A practical introduction to landmark-based geometric morphometricsQuantitative Methods in Paleobiology 16: 168-188.

West-Eberhard, M.J. 1989. Phenotypic plasticity and the origins of diversity. Annual Review of Ecology and Systematics 20(1): 249-278.

Wimberger, P.H. 1992. Plasticity of fish body shape. The effects of diet, development, family and age in two species of Geophagus (Pisces: Cichlidae). Biological Journal of the Linnean Society 45(3): 197-218.

 

*Corresponding author; email: simon@ukm.edu.my