Sains Malaysiana 50(8)(2021): 2271-2282

http://doi.org/10.17576/jsm-2021-5008-11

 

Production of Omega-3 Fatty Acids by Enzymatic Hydrolysis from Lemuru Fish By-Products

(Penghasilan Asid Lemak Omega-3 melalui Hidrolisis Enzim daripada Produk Sampingan Ikan Lemuru)

 

WAWAN KOSASIH1,2*, R. TINA ROSMALINA1, CHANDRA RISDIAN1, ENDANG SAEPUDIN2 & SRI PRIATNI1

 

1Research Unit for Clean Technology, Indonesian Institute of Sciences, Jl. Sangkuriang Bandung, 40135, Indonesia

 

2Department of Chemistry, Faculty of Mathematics and Natural Sciences, University of Indonesia, Depok 16424, Indonesia

 

Received: 28 September 2020/Accepted: 10 December 2020

 

ABSTRACT

Production of omega-3 fatty acids from lemuru fish by-products was studied by enzymatic hydrolysis using a lipase enzyme in one liter of the batch reactor. The hydrolysis temperature of fish oil was set at 45 to 55 for 0 to 24 h, whereas agitation from 50 to 150 rpm. RSM-Box Bhenken was used to study the effect of these parameters on omega-3 (EPA, docosahexaenoic acid (DHA), and α-linolenic acid (ALA)) content. The % free fatty acid (FFA), acid index, peroxide index, iodine index, and saponification index of lemuru fish oil was 0.925, 2.52, 42.5, 97.28, and 160.11%, respectively. GC-MS analysis results showed that unsaturated fatty acids content (62.34%), which are consisted of omega-3 (EPA, DHA, and ALA), omega-6 and omega-9, was much higher than saturated acids (12.97%). The experiment data showed that the highest EPA (1.221%) and DHA (0.312%) content were reached at 50 ℃ and 24 h with 150 rpm of agitation. However, through the RSM-Box Bhenken analysis and 3D surface plot, it was suggested that the optimum condition was obtained at 45 ℃ and 24 h with 150 rpm of agitation with the content of EPA, DHA, and ALA were 1.709, 0.49, and 1.237%, respectively.

Keywords: By-product; lemuru fish oil; lipase; omega-3; response surface method

 

ABSTRAK

Pengeluaran asid lemak omega-3 daripada produk sampingan ikan lemuru dikaji dengan hidrolisis enzimatik menggunakan enzim lipase dalam reaktor kelompok satu liter. Suhu hidrolisis minyak ikan ditetapkan pada suhu 45 hingga 55 ℃ selama 0 hingga 24 jam, kemudian diadukkan dengan kelajuan pengadukan 50 hingga 150 rpm. RSM-Box Bhenken digunakan untuk mengkaji pengaruh parameter ini terhadap kandungan omega-3 (EPA, DHA dan ALA). Peratus asid lemak bebas (FFA), indeks asid, indeks peroksida, indeks iodin dan indeks saponifikasi minyak ikan lemuru masing-masing 0.925, 2.52, 42.5, 97.28 dan 160.11%. Hasil analisis GC-MS menunjukkan bahawa kandungan asid lemak tak tepu (62.34%), yang terdiri daripada omega-3 (EPA, DHA dan ALA), omega-6 dan omega-9, jauh lebih tinggi daripada asid tepu (12.97%). Data uji kaji menunjukkan bahawa kandungan EPA tertinggi (1.221%) dan DHA (0.312%) dicapai pada suhu 50 ℃ dan 24 jam dengan penggoncangan 150 rpm. Walau bagaimanapun, melalui analisis RSM-Box Bhenken dan plot permukaan 3D, dicadangkan bahawa keadaan optimum diperoleh pada suhu 45 ℃ dan 24 jam dengan penggoncangan 150 rpm dengan kandungan EPA, DHA dan ALA masing-masing adalah 1.709, 0.49 dan 1.237%.

Kata kunci: Kaedah permukaan; lipase; minyak ikan lemuru; omega-3; produk sampingan; tindak balas

 

REFERENCES

AOAC. 2005. Association of Official Analytical Chemist. Official method of analysis of the association of official analytical of chemist. The Association of Analytical Chemist. Inc.

AOAC. 1995. Association of Official Analytical Chemist. Official method of analysis of the association of official analytical of chemist. The Association of Analytical Chemist. Inc.

Byun, H.G., Eom, T.K., Jung, W.K. & Kim, S.K. 2008. Characterization of fish oil extracted from fish processing by-products. Preventive Nutrition and Food Science 13(1): 7-11.

Fernández-Lorente, G., Betancor, L., Carrascosa, A.V. & Guisán, J.M. 2011. Release of omega-3 fatty acids by the hydrolysis of fish oil catalyzed by lipases immobilized on hydrophobic supports. Journal of the American Oil Chemists’ Society 88(8): 1173-1178.

Gedi, M.A., Bakar, J. & Mariod, A.A. 2015. Optimization of supercritical carbon dioxide (CO2) extraction of sardine (Sardinella lemuru bleeker) oil using response surface methodology (RSM). Grasas y Aceites66(2): 1-11.

Homayooni, B., Sahari, M.A. & Barzegar, M. 2014. Concentrations of omega-3 fatty acids from rainbow sardine fish oil by various methods. International Food Research Journal 21(2): 743-748.

Iberahim, N.I., Hamzah, Z., Yin, Y.J. & Sohaimi, K.S.A. 2018a. Extraction and characterization of omega-3 fatty acid from catfish using enzymatic hydrolysis technique. MATEC Web of Conferences.

Iberahim, N.I., Hann, Y.C., Hamzah, Z. & Sohaimi, K.S.A. 2018b. Extraction of omega-3 fatty acid from Jade Perch (Scortum barcoo) using enzymatic hydrolysis technique. Indonesian Journal of Chemistry 20(2): 282-291.

Ivanovs, K. & Blumberga, D. 2017. Extraction of fish oil using green extraction methods: A short review. Energy Procedia 128: 477-483.

Jandal, J.M. 1996. Effects of some thermal, chemical and mechanical lipase activity in Shammi goat milk treatments. Small Ruminant Research 20(3): 275-279.

Khoddami, A., Ariffin, A.A., Bakar, J. & Ghazali, H.M. 2012. Quality and fatty acid profile of the oil extracted from fish waste (head, intestine, and liver) (Euthynnus affinis). African Journal of Biotechnology 11(7): 1683-1689.

Lauritzen, L., Brambilla, P., Mazzocchi, A., Harsløf, L., Ciappolino, V. & Agostoni, C. 2016. DHA effects in brain development and function. Nutrients 8(1): 1-17.

Nascimento, V.L.V.D., Bermúdez, V.M.S., Oliveira, A.L.L.D., Kleinberg, M.N., Ribeiro, R. D.T.M., Abreu, R.F.A.D. & Carioca, J.O.B. 2015. Characterization of a hydrolyzed oil obtained from fish waste for nutraceutical application. Food Science and Technology 35(2): 321-325.

Purwanto, M.G.M., Maretha, M.V., Wahyudi, M. & Goeltom, M.T. 2015. Whole cell hydrolysis of sardine (Sardinella lemuru) oil waste using Mucor circinelloides NRRL 1405 immobilized in poly-urethane foam. Procedia Chemistry 14: 256-262.

Raharja, S., Surdarma, P. & Oktavia, T. 2011. Enzyme hydrolysis of fish for production of omega-3 fatty acid using lipase derived from Aspergillus niger. Jurnal Teknologi dan Industri Pangan22(1): 64-72.

Sartimbul, A., Nakata, H., Rohadi, E., Yusuf, B. & Kadarisman, H.P. 2010. Variations in chlorophyll-a concentration and the impact on Sardinella lemuru catches in Bali Strait, Indonesia. Progress in Oceanography 87(1-4): 168-174.

Shahidi, F. & Ambigaipalan, P. 2018. Omega-3 polyunsaturated fatty acids and their health benefits. Annual Review of Food Science and Technology 9: 345-381.

Taati, M.M., Shabanpour, B. & Ojagh, M. 2018. Investigation on fish oil extraction by enzyme extraction and wet reduction methods and quality analysis. Aquaculture, Aquarium, Conservation & Legislation 11(1): 83-90.  

Yadwad, V.B., Ward, O.P. & Noronha, L.C. 1991. Application of lipase to concentrate the docosahexaenoic acid (DHA) fraction of fish oil. Biotechnology and Bioengineering 38(8): 956-959.

 

*Corresponding author; email: wawan.kosasih7@gmail.com

 

   

previous