Sains Malaysiana 50(10)(2021): 2899-2911


Microplastic Abundance in Blood Cockles and Shrimps from Fishery Market, Songkhla Province, Southern Thailand

(Kelimpahan Mikroplastik dalam Kerang Darah dan Udang dari Pasar Ikan, Wilayah Songkhla, Selatan Thailand)




1Marine and Coastal Resources Institute, Faculty of Environmental Management, Prince of Songkla University, Songkhla 90110, Thailand


2Coastal Oceanography and Climate Change Research Center, Prince of Songkla University Songkhla 90110, Thailand


3Department of Marine and Coastal Resources, Bangkok 10210, Thailand


4Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, 21030 Kuala Terengganu, Terengganu Darul Iman, Malaysia


Diserahkan: 28 November 2020/Diterima: 5 Februari 2021



Microplastics have been one of the major pollutants in the marine environment throughout the recent decade. At present, microplastic contamination in marine ecosystems of Thailand region has become an increasing environmental concern because the ingestion of microplastics in marine organisms may adversely influence the safety of seafood. Cockles and shrimps widely distribute among marine organisms in Thailand since they are one of the commercial sources of seafood, which may be a route of exposure to microplastics towards human. This study documents a market survey in order to understand the extension of microplastic presence in blood cockles (Anadara granosa), fine shrimp (Metapenaeus elegans) and Indian white shrimp (Fenneropenaeus indicus) sold in the fishery market in Singhanakorn district, Songkhla province. These selected species are widely consumed and economically important, especially in the southern Thailand region. The total microplastic concentration in blood cockles is 4.71±0.06 n/g (wet weight) and 2.64±0.01 n/individual; in fine shrimp is 0.50±0.19 n/g (wet weight) and 3.70±1.12 n/individual; in Indian white shrimp is 0.69±0.48 n/g (wet weight) and 3.45±0.04n/individual. Discovered microplastics in all the species samples were mainly composed of microplastic fibres and black colour was found to be more predominant. Our results indicate that microplastic contamination is present in Thailands commercial seafood species. As microplastic able to be transferred to human through food web, we suggest further market-based survey studies on other seafood sources. 


Keywords: Cockles; contamination; microplastic; shrimps



Mikroplastik ialah salah satu punca pencemar utama dalam persekitaran marin pada abad ini. Pencemaran mikroplastik dalam ekosistem marin di wilayah Thailand telah menjadi isu persekitaran yang membimbangkan kerana ketakhadaman mikroplastik dalam hidupan laut boleh mempengaruhi keselamatan makanan laut. Kerang dan udang merupakan haiwan laut yang terkenal di Thailand sebagai salah satu punca makanan laut komersial dan mungkin boleh menjadi punca pendedahan mikroplastik kepada manusia. Kajian ini bertujuan untuk memahami pencemaran mikroplastik dalam kerang darah (Anadara granosa), udang halus (Metapenaeus elegans) dan udang putih India (Fenneropenaeus indicus) yang dijual di pasar perikanan di daearah Singhanakorn, wilayah Songkhla. Spesies ini dipilih kerana ia dimakan secara meluas oleh penduduk tempatan dan penting daripada segi ekonomi terutama di wilayah selatan Thailand. Jumlah purata bilangan mikroplastik dalam kerang darah adalah 4.71 ± 0.06 n/g (berat basah) dan 2.64 ± 0.01 n/individu; dalam udang halus adalah 0.50 ± 0.19 n/g (berat basah) dan 3.70 ± 1.12 n/individu; dalam udang putih India adalah 0.69 ± 0.48 n/g (berat basah) dan 3.45 ± 0.04 n/individu. Jumlah mikroplastik yang paling tinggi dijumpai dalam semua sampel adalah mikroplastik yang berbentuk gentian dan mikroplastik yang berwarna hitam didapati paling banyak. Hasil kajian kami menunjukkan bahawa pencemaran mikroplastik berlaku dalam spesies makanan laut komersial di Thailand. Kami mencadangkan kajian berdasarkan tinjauan pasar perikanan dijalankan pada punca makanan laut lain kerana mikroplastik berpotensi dipindahkan kepada manusia melalui jaringan makanan.


Kata kunci: Kerang; mikroplastik; pencemaran; udang



Akhbarizadeh, R., Moore, F. & Keshavarzi, B. 2018. Investigating a probable relationship between microplastics and potentially toxic elements in fish muscles from northeast of Persian Gulf. Environmental Pollution 232: 154-163.

Asgari, P., Moradi, O. & Tajeddin, B. 2014. The effect of nanocomposite packaging carbon nanotube base on organoleptic and fungal growth of Mazafati brand date. International Nano Letters 4(98): 1-5.

Avio, C.G., Gorbi, S., Milan, M., Benedetti, M., Fattorini, D., d’Errico, G., Pauletto, M., Bargelloni, L. & Regoli, F. 2015. Pollutants bioavailability and toxicological risk from microplastics to mussels. Environment Pollution 198: 211-222.

Azad, S.M.O., Towatana, P., Pradit, S., Patricia, B.G., Hue, H.T.T. & Jualaong, S. 2018. First evidence of existence of microplastics in stomach of commercial fishes in the Lower Gulf of Thailand. Applied Ecology and Environmental Research 16(6): 7345-7360.

Barrows, A.P.W., Cathey, S.E. & Petersen, C.W. 2018. Marine environment microfiber contamination: global patterns and the diversity of microparticle origins. Environmental Pollution 237: 275-284.

Brennecke, D., Bernardo, D., Filipa, P. & Isabel, C. 2016. Microplastics as vector for heavy metal contamination from the marine environment. Estuarine, Coastal and Shelf Science 178: 189-195.

Carreras-colom, E., Constenla, M., Soler-membrives, A., Cartes, J.E. & Baeza, M. 2018. Spatial occurrence and effects of microplastic ingestion on the deep-water shrimp Aristeus antennatus. Marine Pollution Bulletin 133: 44-52.

Cho, Y., Won, J.S., Mi, J., Gi, M.H. & Sang, H.H. 2019. Abundance and characteristics of microplastics in market bivalves from South Korea. Environmental Pollution 245: 1107-1116.

Cole, M., Liddle, C., Consolandi, G., Drago, C., Hird, C., Lindeque, P.K. & Galloway, T.S. 2020. Microplastics, microfibres and nanoplastics cause variable sub-lethal responses in mussels (Mytilus spp.). Marine Pollution Bulletin 160: 111552.

Cole, M., Lindeque, P., Fileman, E., Halsband, C. & Galloway, T. 2015. The impact of polystyrene microplastics on feeding, function and fecundity in the marine copepod Calanus helgolandicus. Environmental Science & Technology 49: 1130-1137.

Curren, E., Leaw, C.P., Lim, P.T. & Leong, S.C.Y. 2020. Evidence of marine microplastics in commercially harvested seafood. Frontiers in Bioengineering & Biotechnology 8: 562760.
Dawson, A.L., Kawaguchi, S. & King, C.K. 2018. Turning microplastics into nanoplastics through digestive fragmentation by Antarctic krill. Nature Communications 9: 1-8.

Devriese, L.I., Van Der Meulen, M.D., Maes, T., Bekaert, K., Paul-pont, I., Frère, L., Robbens, J. & Vethaak, A.D. 2015. microplastic contamination in brown shrimp (Crangon crangon, Linnaeus 1758) from coastal waters of the Southern North Sea and channel area. Marine Pollution Bulletin 98(1-2): 179-187.

Fauziah, S.H., Liyana, I.A. & Agamuthu, P. 2015. Plastic debris in the coastal environment: The invincible threat? Abundance of buried plastic debris on Malaysian beaches. Waste Management and Research 33: 812-821.

Fitri, S. & Patria, M.P. 2018. Microplastic contamination on Anadara granosa Linnaeus 1758 in Pangkal Babu Mangrove forest area, Tanjung Jabung Barat district, Jambi. Journal of Physics: Conference Series 1282: 012109.

Fok, L. & Cheung, P.K. 2015. Hong Kong at the Pearl River Estuary: A hotspot of microplastic pollution. Marine Pollution Bulletin 99: 112-118.

Gray, A.D. & Weinstein, J.E. 2017. Size and shape-dependent effects of microplastic particles on adult dagger blade grass shrimp (Palaemonetes pugio). Environmental Toxicology and Chemistry 36(11): 3074-3080.

Green, D.S. 2016. Effects of microplastics on European flat oysters, Ostrea edulis and their associated benthic communities. Environment Pollution 216: 95-103.

Hermabessiere, L., Paul-Pont, I., Cassone, A.L., Himber, C., Receveur, J., Jezequel, R., El Rakwe, M., Rinnert, E., Gilles, R., Lambert, C., Huvet, A., Dehaut, A., Duflos, G. & Soudant, P. 2019. Microplastic contamination and pollutant levels in mussels and cockles collected along the channel coasts. Environmental Pollution 250: 807-819.

Hossain, M.S., Rahman, M.S. & Uddin, M.N. 2020. Microplastic contamination in Penaeid shrimp from the Northern Bay of Bengal. Chemosphere 238: 124688-124697.

Ibrahim, Y.S., Dzulkarnaen, A., Zakaria, Z., Mustaffa, N., Sharif, S.E.T. & Yeong, Y.L. 2020. Detection of microplastics in human colectomy specimens. JGH Open 5(1): 116-121.

Jang, Y.C., Lee, J. & Hong, S. 2014. Sources of plastic marine debris on beaches of Korea: More from the ocean than the land. Ocean Science Journal 49: 151-162.

Jin, H.E., Sang, E.N. & Jae, S.R. 2020. Polystyrene microplastics induce mortality through acute cell stress and inhibition of cholinergic activity in a brine shrimp. Molecular & Cellular Toxicology 16(3): 233-243.

Karlsson, T.M., Vethaak, A.D., Carney, B., Ariese, F., Velzen, M.V., Hassellöv, M. & Leslie, H.A. 2017. Screening for microplastics in sediment, water, marine invertebrates and fish: Method development and microplastic accumulation. Marine Pollution Bulletin 122(1-2): 403-408.

Kim, I.S., Chae, D.H. & Kim, S.K. 2015. Factors influencing the spatial variation of microplastics on high-tidal coastal beaches in Korea. Archives of Environmental Contamination and Toxicology 69: 299-309.

Leads, R.R., Burnett, K.G. & Weinstein, J.E. 2019. The effect of microplastic ingestion on survival of the grass shrimp Palaemonetes pugio (Holthuis, 1949) challenged with Vibrio campbellii. Environmental Toxicology and Chemistry 38(10): 2233-2242.

Lefakane, T.E., Ndibewu, P.P. & Netshiozwi, T.E. 2015. Characterization, chemical phase indentification, and performance evaluation of omnipotent polymers used in the manufacturing of personal protective garments. Polymers Research Journal 9(4): 407-425.

Li, J., Qu, X. & Su, L. 2016. Microplastics in mussels along the coastal waters of China. Environmental Pollution 214: 177-184.

Lin, J.Y. & Wang, B.X. 2014. Room-temperature voltage stressing effects on resistive switching of conductive-bridging RAM cells with Cu-doped SiO2 films. Advances in Materials Science and Engineering 2014: Article ID. 594516.

Lusher, A.L., Welden, N.A., Sobral, P. & Cole, M. 2017. Sampling, isolating and identifying microplastics ingested by fish and invertebrates. Analytical Methods 9(9): 1346-1360.

Mathalon, A. & Hill, P. 2014. Microplastic fibers in the intertidal ecosystem surrounding Halifax Harbor, Nova Scotia. Marine Pollution Bulletin 81(1): 69-79.

Mayoma, B.S., Sørensen, C., Shashoua, Y. & Khan, F.R. 2020. Microplastics in beach sediments and cockles (Anadara antiquata) along the Tanzanian coastline. Bulletin of Environmental Contamination and Toxicology 105(4): 513-521.

Nur Hazimah, M.N. & Obbard, J.P. 2014. Microplastics in Singapore’s coastal mangrove ecosystems. Marine Pollution Bulletin 79: 278-283.

Pirc, U., Vidmar, M., Mozer, A. & Krzan, A. 2016. Emissions of microplastic fibers from microfiber fleece during domestic washing. Environmental Science Pollution Research 23(21): 22206-222111.

Pradit, S., Towatana, P., Nitiratsuwan, T., Darakai, Y. & Weerawong, C. 2020. Occurrence of microplastics on beach sediment at Libong, a pristine island in Andaman Sea, Thailand. ScienceAsia 46(3): 336-343.

Qu, X., Su, L., Li, H., Liang, M. & Shi, H. 2018. Assessing the relationship between the abundance and properties of microplastics in water and in mussels. Science of The Total Environment 621: 679-686.

Ramirez, M.M.B., Caamal, R.D. & von Osten, J.R. 2019. Occurrence and seasonal distribution of microplastics and phthalates in sediments from the urban channel of the Ria and coast of Campeche, Mexico. Science of The Total Environment 672: 97-105.

Renzi, M., Guerranti, G. & Blaŝković, A. 2018. Microplastic contents from maricultured and natural mussels. Marine Pollution Bulletin 131: 248-251.

Rochman, C.M., Tahir, A. & Williams, S.L. 2015. Anthropogenic debris in seafood: Plastic debris and fibers from textiles in fish and bivalves sold for human consumption. Scientific Reports 5: 1-10.

Schwabl, P., Köppel, S. & Königshofer, P. 2019. Detection of various microplastics in human stool: A prospective case series. Annals of Internal Medicine 171: 453-457.

Severini, M.D.F., Buzzi, N.S., López, A.D.F., Colombo, C.V., Sartor, G.L.C., Rimondino, G.N. & Truchet, D.M. 2020. Chemical composition and abundance of microplastics in the muscle of commercial shrimp Pleoticus muelleri at an impacted coastal environment (Southwestern Atlantic). Marine Pollution Bulletin 161: 111700.

Shahul Hamid, F., Bhatti, M.S., Anuar, N., Mohan, P. & Periathamby, A. 2018. Worldwide distribution and abundance of microplastic: How dire is the situation? Waste Management & Research 36(10): 873-897.

Sun, X., Li, Q. & Zhu, M. 2017. Ingestion of microplastics by natural zooplankton groups in the northern South China Sea. Marine Pollution Bulletin 115: 217-224.

Thiele, C.J., Hudson, M.D. & Russell, A.E. 2019. Evaluation of existing methods to extract microplastics from bivalve tissue: Adapted KOH digestion protocol improves filtration at single-digit pore. Marine Pollution Bulletin 142: 384-393.

Van Cauwenberghe, L. & Janssen, C.R. 2014. Microplastics in bivalves cultured for human consumption. Environmental Pollution 193: 65-70.

Wang, J., Peng, J., Tan, Z., Gao, Y., Zhan, Z. & Chen, Q. 2017. Chemosphere microplastics in the surface sediments from the Beijing river littoral zone: Composition, abundance, surface textures and interaction with heavy metals. Chemosphere 171: 248-258.

Watts, A.J.R., Urbina, M.A., Corr, S., Lewis, C. & Galloway, T.S. 2015. Ingestion of plastic microfibers by the crab Carcinus maenas and its effect on food consumption and energy balance. Environmental Science & Technology 49(24): 14597-14604.

Yu, X., Peng, J. & Wang, J. 2016. Occurrence of microplastics in the beach sand of the Chinese inner sea: The Bohai Sea. Environmental Pollution 214: 722-730.


*Pengarang untuk surat-menyurat; email:<