Sains Malaysiana 50(7)(2021): 1947-1957

http://doi.org/10.17576/jsm-2021-5007-10

 

Production of Docosahexaenoic Acid, DHA using Different Modes of Cultivation by Aurantiochytrium sp. SW1

(Penghasilan Asid Dokosaheksaenoik, DHA menggunakan Mod Pengkulturan Berbeza oleh Aurantiochytrium sp. SW1)

 

SHARIFFAH NURHIDAYAH SYED ABDUL RAHMAN1, MOHD SAHAID KALIL2 & AIDIL ABDUL HAMID1*

 

1Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

2Department of Chemical and Processes Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

Diserahkan: 13 Februari 2020/Diterima: 16 November 2020

 

ABSTRACT

Thraustochytrids, such as members of the genus Aurantiochytrium, are rich in docosahexaenoic acid (DHA, C22:6n-3) and represent a promising source of omega-3 fatty acids which plays a vital role in the enhancement of human health, particularly for neurological and visual functions. Different modes of cultivation (batch, fed-batch and repeated-batch) by Aurantiochytrium sp. SW1 were studied for effective docosahexaenoic acid (DHA) production. In this study, three different modes of fermentation were carried out in 1 L shake flasks with a working volume of 500 mL, incubated at 30 ºC and 200 rpm. Batch cultivation significantly exceeds the rest of cultivation modes, achieving maximal lipid and DHA concentrations of 11.22 g/L and 5.87 g/L, respectively, and DHA productivity of 0.061 g/L/h. Lipid and DHA concentration of the repeated-batch process decreased through the cycles for all three different types of replacement ratio (80, 90 and 95%). The average decrease percentage of DHA concentration for cycle one and cycle two were 21.76 and 32.52%, respectively. However, the fatty acid composition of lipids obtained in the cycles remained consistent with 16:0 and DHA being the most abundant fatty acids indicating that this mode of fermentation is highly useable for industrial applications.

 

Keywords: Aurantiochytrium sp. SW1; docosahexaenoic acid; fed-batch; repeated-batch

 

ABSTRAK

Thraustochytrid, seperti dalam kumpulan genus Aurantiochytrium adalah kaya dengan asid dokosaheksaenoik (DHA, C22:6n-3) dan merupakan sumber asid lemak omega-3 yang memainkan peranan penting dalam memelihara kesihatan manusia terutamanya dalam fungsi neuron dan penglihatan. Penghasilan DHA oleh Aurantiochytrium sp. SW1 dalam mod pengkulturan berbeza (kultur kelompok, kultur suap-kelompok dan kultur kelompok ulangan) yang lebih berkesan diteliti. Semua mod pengkulturan ini dijalankan dalam kelalang goncangan 1 L, dengan 500 mL medium penghasilan pada 30 ºC dan 200 rpm. Mod pengkulturan kultur kelompok adalah lebih signifikan berbanding mod pengkulturan lain apabila menghasilkan kepekatan lipid dan DHA tertinggi dengan nilai masing-masing 11.22 dan 5.87 g/L, serta produktiviti DHA bersamaan 0.061 g/L/jam. Dalam kultur kelompok ulangan (isipadu tertentu medium dituai dan baki kultur ditambah dengan sejumlah medium baru), kepekatan lipid dan DHA didapati berkurangan daripada kitaran 1 sehingga memasuki kitaran 2 bagi ketiga-tiga medium nisbah gantian (80, 90 dan 95%). Peratus pengurangan bagi kepekatan DHA dalam kitaran 1 dan 2, masing-masing adalah 21.76 dan 32.52%. Walau bagaimanapun, ketekalan komposisi asid lemak pada nisbah 16:0 dan DHA merupakan asid lemak yang paling banyak diperoleh dalam dua kitaran pengkulturan, menunjukkan bahawa mod penapaian bagi kultur kelompok ulangan berpotensi tinggi bagi kegunaan industri.

 

Kata kunci: Asid dokosaheksaenoik; Aurantiochytrium sp. SW1; kultur kelompok-ulangan; kultur suap-kelompok

 

RUJUKAN

Bae, S.M., Park, Y.C., Lee, T.H., Kweon, D.H. & Choi, J.H. 2004. Production of xylitol by recombinant Saccharomyces cerevisiae containing xylose reductase gene in repeated fed-batch and cell recycle fermentation. Enzyme and Microbial Technology 35(6-7): 545-554.

Barajas-solono, A.F., Yoshida, M. & Watanabe, M.M. 2016. Improvement of biomass and DHA production on a semi-continous culture of Aurantiochytrium sp NYH-2. Chemical Engineering Transaction 49: 235-240.

Chang, G., Luo, Z., Gu, S., Wu, Q., Chang, M. & Wang, X. 2013. Fatty acid shifts and metabolic activity changes of Schizochytrium sp. S31 cultured on glycerol. Bioresource Technology 142: 255-260.

Fan, K.W., Jiang, Y., Fann, Y.W. & Chen, F. 2007. Lipid characterization of mangrove thraustochytrid - Schizochytrium mangrovei. Journal of Agriculture and Food Chemistry 55(8): 2906-2910.

Federova, D., Marone, P.A., Bailey-Hall, E. & Ryan, A.S. 2011. Safety evaluation of algal oil from Schizochytrium sp. Journal of Food and Chemical Toxicology 49(1): 70-77.

Folch, J., Lees, M. & Sloane-Stanley, G.H.A. 1957. A simple method for the isolation and purification of total lipids from animal tissues. Journal of Biological Chemistry 226(1): 497-509.

Furlan, V.J.M., Maus, V., Batista, I. & Bandarra, N.M. 2017. Production of docosahexaenoic acid by Aurantiochytrium sp. ATCC PRA-276. Brazilian Journal of Microbiology 48(2): 359-365.

Ganuza, E., Anderson, A.J. & Ratledge, C. 2008. High-cell-density cultivation of Schizochytrium sp. in an ammonium/pH-auxostat fed-batch system. Journal of Biotechnology Letters 30(9): 1559-1564.

Gao, M., Song, X., Feng, Y., Li, W. & Cui, Q. 2013. Isolation and characterization of Aurantiochytrium species: High docosahexaenoic acid (DHA) production by the newly isolated microlaga, Aurantiochytrium sp. SD116. Journal of Oleo Science 62(3): 143-151.

Garriga, M., Almaraz, M. & Marchiaro, A. 2017. Determination of reducing sugars in extracts of Undaria pinnatifida (harvey) algae by UV-visible spectrophotometry (DNS method). Energy Educational Sciences Technology 3: 173-179.

Giulia, B. 2016. Batch and repeated-batch oil production by microalgae. University of Wageningen, Netherlands. Ph.D. Thesis (Unpublished).

Hermann, T. 2003. Industrial production of amino acids by coryneform bacteria. Journal of Biotechnology 104(1-3): 155-172.

Ito, T., Sota, H., Honda, H., Shimizu, K. & Kobayashi, T. 1991. Efficient acetic acid production by repeated fed-batch fermentation using two fermenters. Applied Microbiology and Biotechnology 36: 295-299.

Koh, E.S., Lee, T.H., Lee, D.Y., Kim, H.J., Ryu, Y.W. & Seo, J.H. 2003. Scale-up of erythritol production by an osmophilic mutant of Candida mangnolie. Biotechnology Letters 25: 2103-2105.

Lee, J., Lee, S.Y., Park, S. & Middleberg, A.P.J. 1999. Control of fed-batch fermentation. Biotechnology Advances 17(1): 29-48.

Makrides, M. & Bhatia, J. 2016. The role of docosahexaenoic acid in the first 1,000 days. Annals of Nutrition & Metabolism 69(1): 8-21.

Manikan, V., Kalil, M.S. & Hamid, A.A. 2015. Response surface optimization of culture medium for enhanced docosahexaenoic acid production by a Malaysian thraustochytrid. Scientific Reports 5(8611): 1-8.

Manikan, V., Kalil, M.S., Isa, M.H.M. & Hamid, A.A. 2014. Improved prediction for medium optimization using factorial screening for docosahexaenoic acid production by Schizochytrium sp. SW1. American Journal of Applied Sciences 11(3): 462-472.

Moeller, L., Grunberg, M., Zehnsdorf, A., Strehlitz, B. & Bley, T. 2010. Biosensor online control of citric acid production from glucose by Yarrowia lipolytica using semi continuous fermentation. Engineering in Life Sciences 10(4): 311-320.

Nazir, Y., Shuib, S., Kalil, M.S., Song, Y. & Hamid, A.A. 2018. Optimization of culture conditions for enhanced growth, lipid and docosahexaenoic acid (DHA) production of Aurantiochytrium SW1 by response surface methodology. Scientific Reports 8(8909): 1-12.

Qu, L., Ren, L.J., Sun, G.N., Ji, X.J., Nie, Z.K. & Huang, H. 2013. Batch, fed-batch and repeated fed-batch fermentation processes of the marine thraustochytrid Schizochytrium sp. for producing docosahexaenoic acid. Bioprocess and Biosystems Engineering 13(1): 966-974.

Ratledge, C. 2005. Fatty acids biosynthesis microorganism being used for single cell oil production. Biochemistry 86(11): 807-815.

Ren, L.J., Sun, L.N., Zhuang, X.Y., Qu, L., Ji, X.J. & Huang, H. 2014. Regulation of docosahexaenoic acid production by Schizochytrium sp.: effect of nitrogen addition. Bioprocess and Biosystems Engineering 37: 865-872.

Ren, L.J., Huang, H., Xiao, A.H., Lian, M., Jin, L.J. & Ji, X.J. 2009. Enhanced docosahexaenoic acid production by reinforcing acetyl-CoA and NADPH supply in Schizochytrium sp. HX-308. Bioprocess and Biosystem Engineering 32(6): 837-843.

Shakeri, M., Sugano, Y. & Shoda, M. 2007. Production of dye-decolorizing peroxidase (rDyP) from complex substrate by repeated-batch and fed-batch culture of recombinant Aspergillus oryzae. Journal of Biosciences and Bioengineering 103(2): 129-134.

Shuib, S., Ibrahim, I., Mackeen, M.M., Ratledge, C. & Hamid, A.A. 2018. First evidence for a multienzyme complex of lipid biosynthesis pathway enzyme in Cunninghamella bainieri. Scientific Reports 8(3077): 1-10.

Valcenir, J.M.F., Mendes, F., Victor, M., Irineu, B. & Narcisa, M.B. 2016. Production of docosahexaenoic acid by Aurantiochytrium sp. ATCC PRA-276. Brazilian Journal of Microbiology 48(2): 359-365.

Wong, M.K.M., Tsui, C.K.M., Au, D.W.T. & Vrijmoed, L.L.P. 2008. Docosahexaenoic acid production and ultra-structure of the thraustochytrid Aurantiochytrium mangrovei MP2 under high glucose concentration. Mycoscience 49(4): 266-270.

Wynn, J.P., Hamid, A.A. & Ratledge, C. 1999. The role of malic enzyme in the regulation of lipid accumulation in filamentous fungi. Microbiology 145(8): 1911-1917.

Yamane, T. & Shimizu, S. 1984. Fed-batch techniques in microbial processes. In. Bioprocess Parameter Control, edited by Fiechter, A. Berlin, Hiedelberg: Springer. pp. 147-194.

Yu, X.J., Yu, X.Q., Liu, Y.L., Sun, J., Zheng, J.Y. & Wang, Z. 2015. Utilization of high-fructose corn syrup for biomass production containing high level of docosahexaenoic acid by a newly isolated Aurantiochytrium sp. YLH70. Applied Biochemistry and Biotechnology 177(6): 1229-1240.

Zhao, X., Hu, C.M., Wu, S.G., Shen, H.W. & Zhao, Z.B. 2011. Lipid production by Rhodosporidium toruloides Y4 using different substrate feeding strategy. Journal of Industrial Microbiology and Biotechnology 38(5): 627-632.

 

*Pengarang untuk surat-menyurat; email: aidilah@ukm.edu.my

 

 

sebelumnya