Sains Malaysiana 50(8)(2021): 2407-2417

http://doi.org/10.17576/jsm-2021-5008-22

 

Non-Isocyanate Polyurethane (NIPU) Based on Rubber Seed Oil Synthesized via Low-Pressured Carbonization Reaction

 (Poliuretana Bukan Isosianat (NIPU) Berasaskan Minyak Biji Getah yang Disintesis secara Tindak Balas Karboksinasi Bertekanan-Rendah)

 

R.A. RADEN SITI AMIRAH1, M.A. FAIZA1* & A. ZULIAHANI2

 

1School of Industrial Technology, Universiti Teknologi MARA, 40450 Shah Alam, Selangor Darul Ehsan, Malaysia

 

2Faculty of Applied Sciences, Universiti Teknologi MARA, Perlis Branch, 02600 Arau, Perlis Indera Kayangan, Malaysia

 

Diserahkan: 27 April 2020/Diterima: 18 Disember 2020

 

abstract

Epoxidised rubber seed oil (ERSO) was successfully synthesized into non-isocyanate polyurethane via carboxylation method whereas peroxoformic acid was formed by in-situ reaction for epoxidation. The effects of temperature and ratio of hydrogen peroxide and formic acid to rubber seed oil carboxylation were studied. The optimum temperature for the epoxidation reaction was found at 50 °C to avoid ring opening reaction of epoxy whilst the optimum ratio of hydrogen peroxide and formic acid is equal molar of double bond: formic acid at 1:2 and 1:1, respectively. At a lower concentration of hydrogen peroxide and formic acid, the oxirane ring was stable due to the lower hydrolysis (oxirane cleavage) of an epoxide. The effect of using low content of formic acid tends to minimize unwanted epoxide ring opening to occur and make the epoxidation rate increased with increasing of oxirane number. Fourier transform infrared (FTIR) spectral displayed the presence of an epoxy functional group at 822 cm-1 and the disappearance of double bond peak at 3011 cm-1 corresponding to epoxidised oil and carbonyl group confirmed the epoxidation reaction had taken place. 1H-NMR was used to confirm the formation of carboxylate functionality after the reaction of epoxy at δ 4.83 and 4.61 ppm. In conclusion, ERSO has great potential to be used as a precursor in producing environmentally friendly non-isocyanate polyurethane.

Keywords: Carboxylated oil; epoxidised oil; non-isocyanate; polyurethane; rubberseed oil

 

ABSTRAK

Minyak biji getah terepoksi (ERSO) berjaya disintesis menjadi poliuretana bukan isosianat melalui kaedah karboksilasi sedangkan asid peroksoformik dibentuk oleh reaksi in-situ untuk epoksidasi. Kesan suhu dan nisbah hidrogen peroksida dan asid formik kepada karboksilasi minyak biji getah dikaji. Suhu optimum untuk tindak balas epoksidasi didapati pada suhu 50 °C untuk mengelakkan tindak balas pembukaan cincin epoksi sementara nisbah optimum hidrogen peroksida dan asid formik adalah molar ikatan berganda yang sama: asid formik masing-masing pada kadar 1: 2 dan 1: 1. Pada kepekatan hidrogen peroksida dan asid formik yang lebih rendah, cincin oksirana stabil kerana hidrolisis yang rendah (pembelahan oksirana) epoksida. Kesan penggunaan kandungan asid formik yang rendah cenderung untuk mengurangkan pembukaan cincin epoksida yang tidak diingini berlaku dan menjadikan kadar epoksidasi meningkat dengan bertambahnya bilangan oksirana. Spektrum inframerah transformasi Fourier (FTIR) memperlihatkan kehadiran kumpulan berfungsi epoksi pada jarak 822 cm-1dan hilangnya puncak ikatan berganda pada 3011 cm-1 yang sepadan dengan minyak terepoksi dan kumpulan karbonil mengesahkan reaksi epoksidasi telah berlaku. 1H-NMR digunakan untuk mengesahkan pembentukan fungsi karboksilat setelah tindak balas epoksi pada δ 4.83 dan 4.61 ppm. Kesimpulannya, ERSO berpotensi besar untuk digunakan sebagai pendahulu dalam menghasilkan poliuretana bukan isosianat yang mesra alam.

Kata kunci: Bukan isosianat; minyak getah; minyak karboksilasi; minyak terepoksi; poliuretana

 

RUJUKAN

Abdullah, B.M. & Salimon, J. 2010. Epoxidation of vegetable oils and fatty acids: Catalyst, methods and advantages. Journal of Applied Sciences 10(15): 1545-1553.

ASTM D5554 - 95. 2011. Standard test method for determination of the iodine value of fats and oils. American Society for Testing and Materials (ASTM).

Boutin, M., Lesage, J., Ostiguy, C., Pauluhn, J. & Bertrand, M.J. 2004. Identification of the isocyanates generated during the thermal degradation of a polyurethane car paint. Journal of Analytical and Applied Pyrolysis 71(2): 791-802.

Chiniwalla, P., Bai, Y., Elce, E., Shick, R., Christopher McDougall, W., Bidstrup Allen, S.A. & Kohl, P.A. 2003. Crosslinking and decomposition reactions of epoxide functionalized polynorbornene. Part I. FTIR and thermogravimetric analysis. Journal of Applied Polymer Science 89(2): 568-577.

Corcuera, M.A., Rueda, L., Fernandez d’Arlas, B., Arbelaiz, A., Marieta, C., Mondragon, I. & Eceiza, A. 2010. Microstructure and properties of polyurethanes derived from castor oil. Polymer Degradation and Stability 95(11): 2175-2184.

Datta, J. & Włoch, M. 2016. Progress in non-isocyanate polyurethanes synthesized from cyclic carbonate intermediates and di- or polyamines in the context of structure -properties relationship and from an environmental point of view. Polymer Bulletin 73(5): 1459-1496.

Doll, K.M. & Erhan, S.Z. 2005a. The improved synthesis of carbonated soybean oil using supercritical carbon dioxide at a reduced reaction time. Green Chemistry 7(12): 849-854.

Doll, K.M. & Erhan, S.Z. 2005b. Synthesis of carbonated fatty methyl esters using supercritical carbon dioxide. Journal of Agricultural and Food Chemistry 53(24): 9608-9614.

Durbetaki, A.J. 1958. Determination of oxirane oxygen in salts of epoxy acids and in the presence of amines. Analytical Chemistry 30(12): 2024-2025.

Harper, C.A. & Petrie, E.M. 2003. Plastics Materials and Processes: A Concise Encyclopedia. Hoboken, New Jersey: John Wiley & Sons, Inc.

Hong, L.K., Yusop, R.M., Salih, N. & Salimon, J. 2015. Optimization of the in situ epoxidation of linoleic acid of Jatropha curcas oil with performic acid. The Malaysian Journal of Analytical Sciences 19(1): 144-154.

Huang, C.H., Lou, C.W., Chuang, Y.A., Liu, C.F., Yu, Z.C. & Lin, J.H. 2015. Rigid/flexible polyurethane foam composite boards with addition of functional fillers: Acoustics evaluations. Sains Malaysiana 44(12): 1757-1763.

Ikwuagwu, O.E., Ononogbu, I.C. & Njoku, O.U. 2000. Production of biodiesel using rubber [Hevea brasiliensis (Kunth. Muell.)] seed oil. Industrial Crops and Products 12(1): 57-62.

Karateev, A., Litvinov, D. & Kalkamanova, O. 2014. “Nonisocyanate” polyhydroxy urethanes based on the raw material of a plant origin. Chemistry & Chemical Technology 8(3): 329-338.

Kathalewar, M., Sabnis, A. & D’Mello, D. 2014. Isocyanate free polyurethanes from new CNSL based bis-cyclic carbonate and its application in coatings. European Polymer Journal 57: 99-108.

Lu, Y. & Larock, R.C. 2010. Soybean oil-based, aqueous cationic polyurethane dispersions: Synthesis and properties. Progress in Organic Coatings 69(1): 31-37.

Mohd Soberi, N.S., Rahman, R. & Zainuddin, F. 2017. Effect of kenaf fiber on morphology and mechanical properties of rigid polyurethane foam composite. Materials Science Forum 888: 188-192.

Raden Siti Amirah, H., Ahmad Faiza, M. & Samsuri, A. 2013. Synthesis and characterization of non-isocyanate polyurethane from epoxidized linoleic acid - a preliminary study. Advanced Materials Research 812: 73-79.

Rosato, D.V. 1993. Rosato’s Plastics Encyclopedia and Dictionary. Hanser Gardner Publications.

Yadav, S., Zafar, F., Hasnat, A. & Ahmad, S. 2009. Poly(urethane fatty amide) resin from linseed oil - a renewable resource. Progress in Organic Coatings 64(1): 27-32.

 

*Pengarang untuk surat-menyurat; email: ahmadfaiza@uitm.edu.my

 

         

 

sebelumnya