Sains Malaysiana 51(5)(2022): 1525-1543

http://doi.org/10.17576/jsm-2022-5105-21

 

Penghasilan Filem Selulosa Terjana Semula: Suatu Ulasan

(Production of Regenerated Cellulose Film: A Review)

 

NUR FATHIHAH JAFRI1, KUSHAIRI MOHD SALLEH2,*, SARANI ZAKARIA2 & NUR JANNAH MD HASSAN2

 

1Fakulti Sains Industri dan Teknologi, Universiti Malaysia Pahang, Lebuhraya Tun Razak, 26300 Gambang, Kuantan, Pahang Darul Makmur, Malaysia

2Jabatan Fizik Gunaan, Fakulti Sains dan Teknologi, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

Diserahkan: 2 Julai 2021/Diterima: 13 Oktober 2021

 

Abstrak

Filem selulosa terjana semula (FSTS) merupakan produk yang dijana semula daripada selulosa terlarut secara interaksi fizikal mahupun kimia. Sifat fizikal, mekanikal dan kimia FSTS bergantung kepada jenis pelarut yang digunakan terhadap selulosa, agen penggumpalan, teknik penuangan serta kaedah pengeringan. Pembentukan FSTS sangat bergantung kepada keterlarutan selulosa serta proses penjanaan semulanya. Oleh itu, mekanisma pembubaran di dalam pelarut terbitan dan tak-terbitan yang terpilih serta agen penggumpal seperti air, campuran air dan aseton, asid sulfurik, medium berasaskan sulfat seperti ammonium sulfat dan gabungan di antara dua kumpulan alkohol dan dua kumpulan ester akan ditekankan dalam ulasan kajian ini. Selain itu, kecenderungan aplikasi FSTS yang terhasil berdasarkan pelarut dan agen penggumpal yang berbeza juga diulas.

 

Kata kunci: Keterlarutan; mekanisme pembubaran; pelarut terbitan; pelarut tak-terbitan; penggumpalan

 

Abstract

Regenerated cellulose film (RCF) is a regenerated product from dissolved cellulose via physical or chemical interaction. Physical, mechanical, and chemical properties of RCF depend on the types of solvent used to dissolve cellulose, coagulation agent, pouring technique, and drying method. The formation of RCF strongly relies on cellulose solubility and its regeneration. Therefore, the dissolving mechanism in the selected derivative and non-derivative solvents and the coagulant agents such as water, a mixture of water with acetone, sulfuric acid, sulphate-based medium, for example, ammonium sulphate, and a combination between two alcohol and two ester groups will be highlighted in this review. Other than that, the propensity of the resulting RCF based on different solvents and coagulants was also reviewed.

 

Keywords: Coagulation; derivatizing solvent; dissolving mechanism; non-derivatizing solvent; solubility

 

RUJUKAN

Azahari, N.A., Gan, S., Zakaria, S., Kaco, H. & Moosavi, S. 2018. Physical properties of regenerated kenaf cellulose membrane: Using h2SO4 as coagulant. Cellulose Chemistry and Technology 52(3-4): 201-207.

Azahari, N.A., Zakaria, S., Kaco, H., Yee, G.S., Chia, C.H., Jaafar, S.N.S. & Sajab, M.S. 2017. Membran selulosa kenaf terjana semula daripada larutan akues NaOH/Urea yang digumpal menggunakan asid sulfurik. Sains Malaysiana 46(5): 795-801.

Bu, D., Hu, X., Yang, Z., Yang, X., Wei, W., Jiang, M., Zhou, Z. & Zaman, A. 2019. Elucidation of the relationship between intrinsic viscosity and molecular weight of cellulose dissolved in tetra-n-butyl ammonium hydroxide/dimethyl sulfoxide. Polymers 11(10): 1605.

Cao, Y., Zhang, R., Cheng, T., Guo, J., Xian, M. & Liu, H. 2017. Imidazolium-based ionic liquids for cellulose pretreatment: Recent progresses and future perspectives. Applied Microbiology and Biotechnology 101(2): 521-532.

Chang, C. & Zhang, L. 2011. Cellulose-based hydrogels: Present status and application prospects. Carbohydrate Polymers 84(1): 40-53.

Chen, Y., Wang, Z. & Zhong, Z. 2019. CO2 emissions, economic growth, renewable and non-renewable energy production and foreign trade in China. Renewable Energy 131: 208-216.

Chook, S.W., Chia, C.H., Zakaria, S., Ayob, M.K., Chee, K.L., Huang, N.M., Neoh, H.M., Lim, H.N., Jamal, R. & Rahman, R.M.F.R.A. 2012. Antibacterial performance of Ag nanoparticles and AgGO nanocomposites prepared via rapid microwave-assisted synthesis method. Nanoscale Research Letters 7: 1-7.

Chowdhury, N.A. & Al-Jumaily, A.M. 2016. Regenerated cellulose/polypyrrole/silver nanoparticles/ionic liquid composite films for potential wound healing applications. Wound Medicine 14: 16-18.

Dias, Y.J., Kolbasov, A., Sinha-Ray, S., Pourdeyhimi, B. & Yarin, A.L. 2020. Theoretical and experimental study of dissolution mechanism of cellulose. Journal of Molecular Liquids 312: 113450.

Dissanayake, N., Thalangamaarachchige, V.D., Thakurathi, M., Knight, M., Quitevis, E.L. & Abidi, N. 2019. Dissolution of cotton cellulose in 1:1 mixtures of 1-butyl-3-methylimidazolium methylphosphonate and 1-alkylimidazole co-solvents. Carbohydrate Polymers 221(February): 63-72.

Dissanayake, N., Thalangamaarachchige, V.D., Troxell, S., Quitevis, E.L. & Abidi, N. 2018. Substituent effects on cellulose dissolution in imidazolium-based ionic liquids. Cellulose 25(12): 6887-6900.

Fekete, T., Borsa, J., Takács, E. & Wojnárovits, L. 2014. Synthesis of cellulose derivative based superabsorbent hydrogels by radiation induced crosslinking. Cellulose 21(6): 4157-4165.

From, M., Larsson, P.T., Andreasson, B., Medronho, B., Svanedal, I., Edlund, H. & Norgren, M. 2020. Tuning the properties of regenerated cellulose: Effects of polarity and water solubility of the coagulation medium. Carbohydrate Polymers 236(December 2019): 116068.

Gan, S., Zakaria, S., Chia, C.H., Padzil, F.N.M. & Ng, P. 2015. Effect of hydrothermal pretreatment on solubility and formation of kenaf cellulose membrane and hydrogel. Carbohydrate Polymers 115: 62-68.

Geng, H., Yuan, Z., Fan, Q., Dai, X., Zhao, Y., Wang, Z. & Qin, M. 2014. Characterisation of cellulose films regenerated from acetone/water coagulants. Carbohydrate Polymers 102(1): 438-444.

Granström, M. 2009. Cellulose derivatives: Synthesis, properties and applications. Academic Dissertation. University of Helsinki, Finland (Unpublished).

Güney, T. 2019. Renewable energy, non-renewable energy and sustainable development. International Journal of Sustainable Development and World Ecology 26(5): 389-397.

Guzman-Puyol, S., Ceseracciu, L., Tedeschi, G., Marras, S., Scarpellini, A., Benítez, J.J., Athanassiou, A. & Heredia-Guerrero, J.A. 2019. Transparent and robust all-cellulose nanocomposite packaging materials prepared in a mixture of trifluoroacetic acid and trifluoroacetic anhydride. Nanomaterials 9(3): 1-14.

Hedlund, A., Köhnke, T. & Theliander, H. 2017. Diffusion in ionic liquid-cellulose solutions during coagulation in water: Mass transport and coagulation rate measurements. Macromolecules 50(21): 8707-8719.

Heinze, T. & Koschella, A. 2005. Solvents applied in the field of cellulose chemistry: A mini review. Polímeros 15(2): 84-90.

Hidayati, S., Zuidar, A.S. & Satyajaya, W. 2017. Effect of acetic acid: Formic acid ratioon characteristics of pulp from oil palm empty fruit bunches (OPEFB). ARPN Journal of Engineering and Applied Sciences 12(12): 3802-3807.

Hu, Y., Thalangamaarachchige, V.D., Acharya, S. & Abidi, N. 2018. Role of low-concentration acetic acid in promoting cellulose dissolution. Cellulose 25(8): 4389-4405.

Huang, T., Zhou, R., Cui, J., Zhang, J., Tang, X., Chen, S., Feng, J. & Liu, H. 2018. Fast and cost-effective preparation of antimicrobial zinc oxide embedded in activated carbon composite for water purification applications. Materials Chemistry and Physics 206: 124-129.

Ichwan, M. & Tae-Won, S. 2010. Preparation and characterization of dense cellulose film for membrane application. Journal of Applied Polymer Science 116(5): 2658-2667.

El Idrissi, A., El Barkany, S., Amhamdi, H. & Maaroufi, A.K. 2013. Synthesis and characterization of the new cellulose derivative films based on the hydroxyethyl cellulose prepared from esparto “stipa tenacissima” cellulose of Eastern Morocco. II. Esterification with acyl chlorides in a homogeneous medium. Journal of Applied Polymer Science 127(5): 3633-3644.

Ingildeev, D., Effenberger, F., Bredereck, K. & Hermanutz, F. 2013. Comparison of direct solvents for regenerated cellulosic fibers via the lyocell process and by means of ionic liquids. Journal of Applied Polymer Science 128(6): 4141-4150.

Isobe, N., Nishiyama, Y., Kimura, S., Wada, M. & Kuga, S. 2014. Origin of hydrophilicity of cellulose hydrogel from aqueous LiOH/urea solvent coagulated with alkyl alcohols. Cellulose 21(2): 1043-1050.

Kaco, H., Baharin, K.W., Zakaria, S., Chia, C.H., Jaafar, S.N.S., Gan, S.Y. & Sajab, M.S. 2017. Preparation and characterization of Fe3O4/regenerated cellulose membrane. Sains Malaysiana 46(4): 623-628.

Kaco, H., Zakaria, S., Razali, N.F., Chia, C.H., Zhang, L. & Jani, S.M. 2014. Properties of cellulose hydrogel from kenaf core prepared via pre-cooled dissolving method. Sains Malaysiana 43(8): 1221-1229.

Kim, Y., Song, Y. & Kim, H. 2018. Preparation of transparent cellulose film with controlled haze using halloysite nanotubes. Cellulose 25(2): 1239-1248.

Kohli, R. 2018. Applications of UV-ozone cleaning technique for removal of surface contaminants. Developments in Surface Contamination and Cleaning: Applications of Cleaning Techniques Volume 11. Elsevier Inc.

Leite, L.S.F., Ferreira, C.M., Corrêa, A.C., Moreira, F.K.V. & Mattoso, L.H.C. 2020. Scaled-up production of gelatin-cellulose nanocrystal bionanocomposite films by continuous casting. Carbohydrate Polymers 238(January): 116198.

Li, J., Yang, H., Huang, K., Cao, S., Ni, Y., Huang, L., Chen, L. & Ouyang, X. 2018. Conductive regenerated cellulose film as counter electrode for efficient dye-sensitized solar cells. Cellulose 25(9): 5113-5122.

Li, R., Wang, S., Lu, A. & Zhang, L. 2015. Dissolution of cellulose from different sources in an NaOH/urea aqueous system at low temperature. Cellulose 22(1): 339-349.

Lindman, B., Karlström, G. & Stigsson, L. 2010. On the mechanism of dissolution of cellulose. Journal of Molecular Liquids 156(1): 76-81.

Liu, R., Zhang, J., Sun, S., Bian, Y. & Hu, Y. 2019. Dissolution and recovery of cellulose from pine wood bits in ionic liquids and a co-solvent component mixed system. Journal of Engineered Fibers and Fabrics 14(4): 155892501983844.

Liu, S. & Zhang, L. 2009. Effects of polymer concentration and coagulation temperature on the properties of regenerated cellulose films prepared from LiOH/urea solution. Cellulose 16(2): 189-198.

Liu, X., Huang, K., Lin, X., Li, H., Tao, T., Wu, Q., Zheng, Q., Huang, L., Ni, Y., Chen, L., Ouyang, X. & Li, J. 2020a. Transparent and conductive cellulose film by controllably growing aluminum doped zinc oxide on regenerated cellulose film. Cellulose 27(9): 4847-4855.

Liu, X., Pang, J., Zhang, X., Wu, Y. & Sun, R. 2013. Regenerated cellulose film with enhanced tensile strength prepared with ionic liquid 1-ethyl-3-methylimidazolium acetate (EMIMAc). Cellulose 20(3): 1391-1399.

Liu, X., Xiao, W., Ma, X., Huang, L., Ni, Y., Chen, L., Ouyang, X. & Li, J. 2020b. Conductive regenerated cellulose film and its electronic devices - A review. Carbohydrate Polymers 250(August): 116969.

Liu, Z., Wang, H., Li, Z., Lu, X., Zhang, X., Zhang, S. & Zhou, K. 2011. Characterization of the regenerated cellulose films in ionic liquids and rheological properties of the solutions. Materials Chemistry and Physics 128(1-2): 220-227.

Lu, R., Zhang, X., Fu, L., Wang, H., Briber, R.M. & Wang, H. 2020. Amorphous cellulose thin films. Cellulose 27(6): 2959-2965.

Lubis, R., Wirjosentono, B., Eddyanto & Septevani, A.A. 2020. Preparation, characterization and antimicrobial activity of grafted cellulose fiber from durian rind waste. Colloids and Surfaces A: Physicochemical and Engineering Aspects 604(June): 125311.

Mahadeva, S.K. & Kim, J. 2013. Porous tin-oxide-coated regenerated cellulose as disposable and low-cost alternative transducer for urea detection. IEEE Sensors Journal 13(6): 2223-2228.

Makarov, I.S., Golova, L.K., Vinogradov, M.I., Mironova, M.V., Anokhina, T.S. & Arkharova, N.A. 2021. Morphology and transport properties of membranes obtained by coagulation of cellulose solutions in isobutanol. Carbohydrate Polymers 254: 117472.

Mazlan, N.S.N., Zakaria, S., Gan, S., Hua, C.C. & Baharin, K.W. 2019. Comparison of regenerated cellulose membrane coagulated in sulphate based coagulant. Cerne 25(1): 18-24.

Medronho, B. & Lindman, B. 2015. Brief overview on cellulose dissolution/regeneration interactions and mechanisms. Advances in Colloid and Interface Science 222: 502-508.

Meng, Y., Pang, Z. & Dong, C. 2017. Enhancing cellulose dissolution in ionic liquid by solid acid addition. Carbohydrate Polymers 163: 317-323.

Mohd, N., Draman, S.F.S., Salleh, M.S.N. & Yusof, N.B. 2017. Dissolution of cellulose in ionic liquid: A review. AIP Conference Proceedings. p. 1809.

Nguyen, M.N., Kragl, U., Barke, I., Lange, R., Lund, H., Frank, M., Springer, A., Aladin, V., Corzilius, B. & Hollmann, D. 2020. Coagulation using organic carbonates opens up a sustainable route towards regenerated cellulose films. Communications Chemistry 3(1): 1-9.

Nishiwaki-Akine, Y., Kanazawa, S., Uneyama, T., Nitta, K.H., Yamamoto-Ikemoto, R. & Watanabe, T. 2017. Transparent woody film made by dissolution of finely divided Japanese beech in formic acid at room temperature. ACS Sustainable Chemistry and Engineering 5(12): 11536-11542.

Olsson, C. & Westm, G. 2013. Direct dissolution of cellulose: Background, means and applications. In Cellulose - Fundamental Aspects. Intech. pp. 143-178.

Onwukamike, K.N., Grelier, S., Grau, E., Cramail, H. & Meier, M.A.R. 2019. Critical review on sustainable homogeneous cellulose modification: Why renewability is not enough. ACS Sustainable Chemistry and Engineering 7(2): 1826-1840.

Oriez, V., Peydecastaing, J. & Pontalier, P.Y. 2019. Lignocellulosic biomass fractionation by mineral acids and resulting extract purification processes: Conditions, yields, and purities. Molecules 24(23): 4273.

Ozturk, M., Saba, N., Altay, V., Iqbal, R., Hakeem, K.R., Jawaid, M. & Ibrahim, F.H. 2017. Biomass and bioenergy: An overview of the development potential in Turkey and Malaysia. Renewable and Sustainable Energy Reviews 79(March): 1285-1302.

Paunonen, S. 2013. Strength and barrier enhancements of cellophane and cellulose derivative films: A review. BioResources 8(2): 3098-3121.

Pereira, A., Duarte, H., Nosrati, P., Gubitosi, M., Gentile, L., Romano, A., Medronho, B. & Olsson, U. 2018. Cellulose gelation in NaOH solutions is due to cellulose crystallization. Cellulose 25(6): 3205-3210.

Qing, Y., Sabo, R., Wu, Y., Zhu, J.Y. & Cai, Z. 2015. Self-assembled optically transparent cellulose nanofibril films: Effect of nanofibril morphology and drying procedure. Cellulose 22(2): 1091-1102.

Raghuwanshi, V.S., Cohen, Y., Garnier, G., Garvey, C.J., Russell, R.A., Darwish, T. & Garnier, G. 2018. Cellulose dissolution in ionic liquid: Ion binding revealed by neutron scattering. Macromolecules 51(19): 7649-7655.

Saedi, S., Shokri, M., Kim, J.T. & Shin, G.H. 2021. Semi-transparent regenerated cellulose/ZnONP nanocomposite film as a potential antimicrobial food packaging material. Journal of Food Engineering 307(April): 110665.

Saidi, A.S.M., Zakaria, S., Chia, C.H., Jaafar, S.N.S. & Padzil, F.N.M. 2016. Physico-mechanical properties of kenaf pulp cellulose membrane cross-linked with glyoxal. Sains Malaysiana 45(2): 263-270.

Sayyed, A.J., Deshmukh, N.A. & Pinjari, D.V. 2019. A critical review of manufacturing processes used in regenerated cellulosic fibres: Viscose, cellulose acetate, cuprammonium, LiCl/DMAc, ionic liquids, and NMMO based lyocell. Cellulose 26(5): 2913-2940.

Sen, S., Martin, J.D. & Argyropoulos, D.S. 2013. Review of cellulose non-derivatizing solvent interactions with emphasis on activity in inorganic molten salt hydrates. ACS Sustainable Chemistry and Engineering 1(8): 858-870.

Shahrim, N.A., Sarifuddin, N., Zaki, H.H.M. & Azhar, A.Z.A. 2018. The effects of glycerol addition to the mechanical properties of thermoplastic films based on jackfruit seed starch. Malaysian Journal of Analytical Sciences 22(5): 892-898.

Shaikh, T., Chaudhari, S. & Varma, A. 2012. Viscose Rayon: A legendary development in the manmade textile. Mrs. Alpa Varma/International Journal of Engineering Research and Applications (IJERA) 2: 675-680.

Shen, M., Song, B., Zeng, G., Zhang, Y., Huang, W., Wen, X. & Tang, W. 2020. Are biodegradable plastics a promising solution to solve the global plastic pollution? Environmental Pollution 263: 114469.

Trygg, J., Fardim, P., Gericke, M., Mäkilä, E. & Salonen, J. 2013. Physicochemical design of the morphology and ultrastructure of cellulose beads. Carbohydrate Polymers 93(1): 291-299.

Wan, Y., An, F., Zhou, P., Li, Y., Liu, Y., Lu, C. & Chen, H. 2017. Regenerated cellulose I from LiCl·DMAc solution. Chemical Communications 53(25): 3595-3597.

Wang, Q., Xiao, S., Shi, S.Q. & Cai, L. 2019. Microwave-assisted formic acid extraction for high-purity cellulose production. Cellulose 26(10): 5913-5924.

Wang, S., Lu, A. & Zhang, L. 2016. Recent advances in regenerated cellulose materials. Progress in Polymer Science 53: 169-206.

Wang, W., Li, F., Yu, J., Zhou, J. & Wang, H. 2017. Effects of coagulation conditions on structure and properties of cellulose-based fibers from aqueous NaOH solvent. Carbohydrate Polymers 164: 118-126.

Wei, X., Wang, Y., Li, J., Wang, F., Chang, G., Fu, T. & Zhou, W. 2018. Effects of temperature on cellulose hydrogen bonds during dissolution in ionic liquid. Carbohydrate Polymers 201: 387-391.

Wong, L.C., Leh, C.P. & Goh, C.F. 2021. Designing cellulose hydrogels from non-woody biomass. Carbohydrate Polymers 264(April): 118036.

Wu, Y., Luo, X., Li, W., Song, R., Li, J., Li, Y., Li, B. & Liu, S. 2016. Green and biodegradable composite films with novel antimicrobial performance based on cellulose. Food Chemistry 197: 250-256.

Xie, Y., Xu, H., He, X., Hu, Y., Zhu, E., Gao, Y., Liu, D., Shi, Z., Li, J., Yang, Q. & Xiong, C. 2020. Flexible electronic skin sensor based on regenerated cellulose/carbon nanotube composite films. Cellulose 27(17): 10199-10211.

Xu, A., Chen, L., Wang, Y., Liu, R. & Niu, W. 2019. Development of diallylimidazolium Methoxyacetate/DMSO (DMF/DMA) solvents for porous material. Polymers 11(5). DOI: 10.3390/polym11050845.

Xu, A., Cao, L. & Wang, B. 2015. Facile cellulose dissolution without heating in [C4mim] [CH3COO]/DMF solvent. Carbohydrate Polymers 125: 249-254.

Yang, J., Medronho, B., Lindman, B. & Norgren, M. 2020. Simple one pot preparation of chemical hydrogels from cellulose dissolved in cold LiOH/Urea. Polymers 12(2): 373.

Zailuddin, N.L.I., Osman, A.F. & Rahman, R. 2020. Effects of formic acid treatment on properties of oil palm empty fruit bunch (OPEFB)-Based all cellulose composite (ACC) films. Journal of Engineering Science 16(1): 75-95.

Zainal, S.H., Mohd, N.H., Suhaili, N., Anuar, F.H., Lazim, A.M. & Othaman, R. 2021. Preparation of cellulose-based hydrogel: A review. Journal of Materials Research and Technology 10: 935-952.

Zhang, S., Chen, C., Duan, C., Hu, H., Li, H., Li, J., Liu, Y., Ma, X., Stavik, J. & Ni, Y. 2018. Regenerated cellulose by the lyocell process, a brief review of the process and properties. BioResources 13(2): 1-16.

Zhao, D., Zhang, Q., Chen, W., Yi, X., Liu, S., Wang, Q., Liu, Y., Li, J., Li, X. & Yu, H. 2017. Highly flexible and conductive cellulose-Mediated PEDOT:PSS/MWCNT composite films for supercapacitor electrodes. ACS Applied Materials and Interfaces 9(15): 13213-13222.

Zhao, D., Li, H., Zhang, J., Fu, L., Liu, M., Fu, J. & Ren, P. 2012. Dissolution of cellulose in phosphate-based ionic liquids. Carbohydrate Polymers 87(2): 1490-1494.

Zhao, G., Lyu, X., Lee, J., Cui, X. & Chen, W.N. 2019. Biodegradable and transparent cellulose film prepared eco-friendly from durian rind for packaging application. Food Packaging and Shelf Life 21(August 2018): 100345.

Zlenko, D.V., Vtyurina, D.N., Usachev, S.V., Skoblin, A.A., Mikhaleva, M.G., Politenkova, G.G., Nikolsky, S.N. & Stovbun, S.V. 2021. On the orientation of the chains in the mercerized cellulose. Scientific Reports 11(1): 3-10.

 

*Pengarang untuk surat-menyurat; email: kushairisalleh@gmail.com

 

 

     

sebelumnya