Sains Malaysiana 51(7)(2022): 2033-2046

http://doi.org/10.17576/jsm-2022-5107-08

 

Low Methylation of Matrix Metalloproteinase 1 (MMP1) is Associated with Preterm Labour in Malaysian Mothers

(Metilasi Rendah Matriks Metalloproteinase 1 (MMP1) dikaitkan dengan Kelahiran Bayi Pramatang dalam kalangan Ibu di Malaysia)

 

NURUL HAYATI MOHAMAD ZAINAL1,*, NOR AZLIN MOHAMED ISMAIL2 & NORFILZA M. MOKHTAR3,*

 

1Department of Human Anatomy, Faculty of Medicine and Health Sciences, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia

2Department of Obstetrics & Gynecology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Center, Jalan Yaacob Latif, Bandar Tun Razak, 56000 Cheras, Kuala Lumpur, Federal Territory, Malaysia

3Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Preclinical Building, Jalan Yaacob Latif, Bandar Tun Razak, 56000 Cheras, Kuala Lumpur, Federal Territory, Malaysia

 

Diserahkan: 4 Februari 2021/Diterima: 7 Januari 2022

 

Abstract

Preterm births comprise 10.6% of livebirths worldwide and account for 35% of deaths among newborn babies. Understanding DNA methylation may offer basic knowledge in the understanding of pathogenesis of preterm labour. The study was undertaken to determine DNA methylation of matrix metalloproteinase 1 (MMP1) promoter in term and preterm labour using methylation-specific polymerase chain reaction (MSP). Thirty maternal venous blood samples (n=15 each) of term and preterm labour was subjected to bisulfite treatment prior to MSP. This result was then validated using DNA sequencing. Evaluation of the sequencing results by CpG islands analysis was performed using the ClustalW and SPSS software. Primers for MMP1 were located between -1226 and -1378 upstream from the transcription start site (TSS) that consisted five CpG islands. Preterm labour group had significantly lower methylated CpG islands with 39 out of total 75 (52%) compared to the term labour that has 49 out of 75 methylated CpG islands (65.33%) (t=0.694, p<0.05). Methylation occurred in 4 out of 5 methylated CpG islands in the MMP1 promoter where it only involved 2 preterm samples (13.33%) and 7 term samples (46.47%). This data suggested there were significant lower percentage of methylated MMP1 in preterm labour. Higher percentage of methylated MMP1 as observed in the term labour, will probably reduce the expression of MMP1, thus maintaining fibrillar collagen strength on the amniotic membrane and subsequently maintain the pregnancy till term. In conclusion, preterm labour has higher percentage of methylated CpG compared with term labour in MMP1 gene. 

 

Keywords: CpG islands; DNA methylation; matrix metalloproteinase 1; methylation-specific PCR; preterm labour

 

Abstrak

Kelahiran bayi pramatang merangkumi 10.6% kelahiran hidup di seluruh dunia dan menyumbang 35% kematian dalam kalangan bayi yang baru lahir. Pemahaman mengenai metilasi DNA boleh menyumbang kepada asas pengetahuan dalam memahami patogenesis kelahiran bayi pramatang. Kajian ini dilakukan untuk menentukan metilasi DNA matriks metalloproteinase 1 (MMP1) promoter dalam kelahiran bayi matang dan bayi pramatang menggunakan analisis bisulfit, metilasi khusus tindak balas rantaian polimerase (MSP). Tiga puluh sampel darah vena ibu (n=15 setiap kumpulan) daripada kelahiran bayi matang dan bayi pramatang menjalani rawatan bisulfit dan seterusnya MSP. Keputusan MSP disahkan menggunakan penjujukan DNA. Penilaian keputusan penjujukan bagi analisis gugusan CpG dibuat menggunakan perisian ClustalW dan SPSS. Primer bagi MMP1 terletak di antara -1226 dan -1378 daripada lokasi permulaan transkripsi (TSS) gen MMP1 yang mengandungi lima gugusan CpG. Kumpulan kelahiran bayi pramatang mempunyai gugusan CpG metilasi yang signikannya lebih rendah iaitu 39 daripada keseluruhan 75 (52%) berbanding kelahiran bayi matang yang mempunyai 49 daripada jumlah keseluruhan 75 CpG (65.33%) (t=0.694, p<0.05). Metilasi dikesan pada 4 daripada 5 gugusan CpG dalam promoter MMP1 dan ia hanya melibatkan 2 sampel pramatang (13.33%) dan 7 sampel kelahiran matang (46.47%). Data ini menunjukkan terdapatnya peratusan signifikan metilasi MMP1 yang lebih rendah dalam kelahiran bayi pramatang. Peratusan metilasi MMP1 yang lebih tinggi dalam kelahiran bayi matang berpotensi menyebabkan ekspresi MMP1 berkurangan dan mengekalkan kekuatan kolagen fibrilar membran amnion, seterusnya mengekalkan kehamilan sehingga tempoh matang. Kesimpulannya, kelahiran bayi pramatang mempunyai peratusan gugusan CpG metilasi yang lebih rendah berbanding kelahiran bayi matang bagi gen MMP1.

 

Kata kunci: Gugusan CpG; kelahiran bayi pramatang; matriks metalloproteinase 1; metilasi DNA; metilasi khusus tindak balas rantaian polimerase (MSP)

 

RUJUKAN

Amar, S., Smith, L. & Fields, G.B. 2017. Matrix metalloproteinase collagenolysis in health and disease. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research 1864(11): 1940-1951.

Baer, R.J., Rogers, E.E., Partridge, J.C., Anderson, J.G., Morris, M., Kuppermann, M., Franck, L.S., Rand, L. & Jelliffe-Pawlowski, L.L. 2016. Population-based risks of mortality and preterm morbidity by gestational age and birth weight. Journal of Perinatology 36(11): 1008-1013.

Chan, M.A., Ciaccio, C.E., Gigliotti, N.M., Rezaiekhaligh, M., Siedlik, J.A., Kennedy, K. & Barnes, C.S. 2017. DNA methylation levels associated with race and childhood asthma severity.  Journal of Asthma 54(8): 825-832.

Chang, T.J., Yang, D.M., Wang, M.L., Liang, K.H., Tsai, P.H., Chiou, S.H., Lin, T.H. & Wang, C.T. 2020. Genomic analysis and comparative multiple sequences of SARS-CoV2. Journal of the Chinese Medical Association 83(6): 537-543.

Chawanpaiboon, S., Vogel, J.P., Moller, A.B., Lumbiganon, P., Petzold, M., Hogan, D., Landoulsi, S., Jampathong, N., Kongwattanakul, K., Laopaiboon, M. & Lewis, C. 2019. Global, regional, and national estimates of levels of preterm birth in 2014: A systematic review and modelling analysis. The Lancet Global Health 7(1): e37-e46.

Chu, C.H., Chang, S.C., Wang, H.H., Yang, S.H., Lai, K.C. & Lee, T.C. 2018. Prognostic values of EPDR1 hypermethylation and its inhibitory function on tumor invasion in colorectal cancer. Cancers 10(10): 393.

Cross, S.H. & Bird, A.P. 1995. CpG islands and genes. Current Opinion in Genetics & Development 5(3): 309-314.

Dugué, P.A., Jung, C.H., Joo, J.E., Wang, X., Wong, E.M., Makalic, E., Schmidt, D.F., Baglietto, L., Severi, G., Southey, M.C. & English, D.R. 2020. Smoking and blood DNA methylation: An epigenome-wide association study and assessment of reversibility. Epigenetics 15(4): 358-368.

Eo, S.H., Choi, S.Y. & Kim, S.J. 2016. PEP-1-SIRT2-induced matrix metalloproteinase-1 and-13 modulates type II collagen expression via ERK signaling in rabbit articular chondrocytes. Experimental Cell Research 348(2): 201-208.

Frey, H.A., Stout, M.J., Pearson, L.N., Tuuli, M.G., Cahill, A.G., Strauss III, J.F., Gomez, L.M., Parry, S., Allsworth, J.E. & Macones, G.A. 2016. Genetic variation associated with preterm birth in African-American women. American Journal of Obstetrics & Gynecology 215(2): 235.e1-235.e8.

Geng, J., Huang, C. & Jiang, S. 2016. Roles and regulation of the matrix metalloproteinase system in parturition. Molecular Reproduction and Development 83(4): 276-286.

Gil, M.M., Galeva, S., Jani, J., Konstantinidou, L., Akolekar, R., Plana, M.N. & Nicolaides, K.H. 2019. Screening for trisomies by cfDNA testing of maternal blood in twin pregnancy: Update of the fetal medicine foundation results and meta-analysis. Ultrasound Obstet Gynecol. 53(6): 734-742.

Hafström, M., Källén, K., Serenius, F., Maršál, K., Rehn, E., Drake, H., Ådén, U., Farooqi, A., Thorngren-Jerneck, K. & Strömberg, B. 2018. Cerebral palsy in extremely preterm infants. Pediatrics 141(1): e20171433.

Hattori, N. & Ushijima, T. 2017. Analysis of gene-specific DNA methylation. In Handbook of Epigenetics, edited by Tollefsbol, T.O. Cambridge: Acedemic Press. pp. 113-123.

Herman, J.G., Graff, J.R., Myöhänen, S.B.D.N., Nelkin, B.D. & Baylin, S.B. 1996. Methylation-specific PCR: A novel PCR assay for methylation status of CpG islands.  Proceedings of the National Academy of Sciences 93(18): 9821-9826.

Hong, X., Sherwood, B., Ladd-Acosta, C., Peng, S., Ji, H., Hao, K., Burd, I., Bartell, T.R., Wang, G., Tsai, H.J., Liu, X., Ji, Y., Wahl, A., Caruso, D., Lee-Parritz, A., Zuckerman, C. & Wang, X.  2018. Genome-wide DNA methylation associations with spontaneous preterm birth in US blacks: Findings in maternal and cord blood samples. Epigenetics 13(2): 163-172.

Houben, E., Smits, E., Pimenta, J.M., Black, L.K., Bezemer, I.D. & Beest, F.J.P. 2019. Increased risk of morbidities and health‐care utilisation in children born following preterm labour compared with full‐term labour: A population‐based study.  Journal of Paediatrics and Child Health 55(4): 446-453.

Hug, L., David, S. & You, D. 2017. Levels and Trends in Child Mortality: Report 2017. New York: UNICEF.

Hung, J.H. & Weng, Z. 2016. Sequence alignment and homology search with BLAST and ClustalW. Cold Spring Harbor Protocols 2016(11): 093088.

Jang, H.S., Shin, W.J., Lee, J.E. & Do, J.T. 2017. CpG and non-CpG methylation in epigenetic gene regulation and brain function. Genes 8(6): 148.

Kader, F. & Ghai, M. 2017. DNA methylation-based variation between human populations. Molecular Genetics and Genomics 292(1): 5-35.

Kim, S. & Kaang, B.K. 2017. Epigenetic regulation and chromatin remodeling in learning and memory. Experimental & Molecular Medicine 49(1): e281.

King, A.D., Huang, K., Rubbi, L., Liu, S., Wang, C.Y., Wang, Y., Pellegrini, M. & Fan, G. 2016. Reversible regulation of promoter and enhancer histone landscape by DNA methylation in mouse embryonic stem cells. Cell Reports 17(1): 289-302.

Konwar, C., Price, E.M., Wang, L.Q., Wilson, S.L., Terry, J. & Robinson, W.P. 2018. DNA methylation profiling of acute chorioamnionitis-associated placentas and fetal membranes: insights into epigenetic variation in spontaneous preterm births. Epigenetics Chromatin 11(1): 63.

Krane, S.M. 1995. Is collagenase (matrix metalloproteinase-1) necessary for bone and other connective tissue remodeling? Clinical Orthopaedics and Related Research 1(313): 47-53.

Li, C., Xiong, W., Liu, X., Xiao, W., Guo, Y., Tan, J. & Li, Y. 2019. Hypomethylation at non-CpG/CpG sites in the promoter of HIF-1alpha gene combined with enhanced H3K9Ac modification contribute to maintain higher HIF-1alpha expression in breast cancer. Oncogenesis 8(4): 1-18.

Linner, A. & Almgren, M. 2020. Epigenetic programming-the important first 1000 days. Acta Paediatrica 109(3): 443-452.

Litwiniuk, M., Radowicka, M., Krejner, A., Wielgoś, M. & Grzela, T. 2017. The MMP-9/TIMP-1 imbalance and the reduced level of TGF-β in the cervical area of amniotic membrane is a possible risk factor of PROM and premature labor—proof-of-concept study. Ginekologia Polska 88(7): 379-384.

Liu, Z.J. & Maekawa, M. 2003. Polymerase chain reaction-based methods of DNA methylation analysis. Analytical biochemistry 317(2): 259-265.

Lombardi, A., Makieva, S., Rinaldi, S.F., Arcuri, F., Petraglia, F. & Norman, J.E. 2018. Expression of matrix metalloproteinases in the mouse uterus and human myometrium during pregnancy, labor, and preterm labor. Reproductive Sciences 25(6): 938-949.

Maymon, E., Romero, R., Pacora, P., Gervasi, M.T., Bianco, K., Ghezzi, F. & Yoon, B.H. 2000. Evidence for the participation of interstitial collagenase (matrix metalloproteinase 1) in preterm premature rupture of membranes. American Journal of Obstetrics and Gynecology 183(4): 914-920.

Menon, R. & Richardson, L.S. 2017. Preterm prelabor rupture of the membranes: A disease of the fetal membranes. Seminars in Perinatology 41(7): 409-419.

Modi, B.P., Teves, M.E., Pearson, L.N., Parikh, H.I., Chaemsaithong, P., Sheth, N.U., York, T.P., Romero, R. & Strauss III, J.F. 2017. Rare mutations and potentially damaging missense variants in genes encoding fibrillar collagens and proteins involved in their production are candidates for risk for preterm premature rupture of membranes. PLoS ONE 12(3): e0174356.

Munchel, Sarah, Suzanne Rohrback, Carlo Randise-Hinchliff, Sarah Kinnings, Shweta Munchel, S., Rohrback, S., Randise-Hinchliff, C., Kinnings, S., Deshmukh, S., Alla, N., Tan, C., Kia, A., Greene, G., Leety, L., Rhoa, M., Yeats, S., Saul, M., Chou, J., BiancO, K., O’Shea, K., Bujold, E., Norwitz, E., Wapner, R., Saade, G. & Kaper, F. 2020. Circulating transcripts in maternal blood reflect a molecular signature of early-onset preeclampsia. Science Translational Medicine 12(550): eaaz0131.

Myntti, T., Rahkonen, L., Nupponen, I., Pätäri-Sampo, A., Tikkanen, M., Sorsa, T., Juhila, J., Andersson, S., Paavonen, J. & Stefanovic, V. 2017. Amniotic fluid infection in preterm pregnancies with intact membranes. Disease Markers 2017: 8167276.

Nagase, H. & Woessner, J.F. 1999. Matrix metalloproteinases. Journal of Biological Chemistry 274(31): 21491-21494.

Okazaki, R., Ootsuyama, A., Yoshida, Y. & Norimura, T. 2011. Establishment of methylation-specific PCR for the mouse p53 gene. Molecular Biology International 2011: 938435.

Pajares, M.J., Palanca-Ballester, C., Urtasun, R., Alemany-Cosme, E., Lahoz, A. & Sandoval, J. 2021. Methods for analysis of specific DNA methylation status. Methods 187: 3-12.

Phillips, C., Velji, Z., Hanly, C. & Metcalfe, A. 2017. Risk of recurrent spontaneous preterm birth: A systematic review and meta-analysis. BMJ Open 7(6): e015402.

Ramalho-Carvalho, J., Henrique, R. & Jerónimo, C. 2018. Methylation-specific PCR. In DNA Methylation Protocols, edited by Tost, J. New York: Springer. pp. 447-472.

de Andrade Ramos, B.R. & da Silva, M.G. 2018. The burden of genetic and epigenetic traits in prematurity. Reproductive Sciences 25(4): 471-479.

Saif, I., Kasmi, Y., Allali, K. & Ennaji, M.M. 2018. Prediction of DNA methylation in the promoter of gene suppressor tumor. Gene 651: 166-173.

Santos Jr., H.P., Bhattacharya, A., Martin, E.M., Addo, K., Psioda, M., Smeester, L., Joseph, R.M., Hooper, S.R., Frazier, J.A., Kuban, K.C., O’Shea, T.M. & Fry, R.C. 2019. Epigenome-wide DNA methylation in placentas from preterm infants: Association with maternal socioeconomic status. Epigenetics 14(8): 751-765.

Sarda, S., Das, A., Vinson, C. & Hannenhalli, S. 2017. Distal CpG islands can serve as alternative promoters to transcribe genes with silenced proximal promoters. Genome Research 27(4): 553-566.

Šestáková, Š., Šálek, C. & Remešová, H. 2019. DNA methylation validation methods: A coherent review with practical comparison. Biological Procedures Online 21(1): 1-11.

Shah, M.R. 2017. Preterm perlabour repture membranes - Overview. Indian Journal of Perinatology and Reproductive Biology 7(4): 108-138.

Singer, B.D. 2019. A practical guide to the measurement and analysis of DNA methylation. American Journal of Respiratory Cell and Molecular Biology 61(4): 417-428.

Skinner, M.K., Ben Maamar, M., Sadler-Riggleman, I., Beck, D., Nilsson, E., McBirney, M., Klukovich, R., Xie, Y., Tang, C. & Yan, W. 2018. Alterations in sperm DNA methylation, non-coding RNA and histone retention associate with DDT-induced epigenetic transgenerational inheritance of disease. Epigenetics & Chromatin 11(1): 1-24.

Soozangar, N., Sadeghi, M.R., Jeddi, F., Somi, M.H., Shirmohamadi, M. & Samadi, N. 2018. Comparison of genome-wide analysis techniques to DNA methylation analysis in human cancer. Journal of Cellular Physiology 233(5): 3968-3981.

Spainhour, J.C., Lim, H.S., Yi, S.V. & Qiu, P. 2019. Correlation patterns between DNA methylation and gene expression in the cancer genome atlas. Cancer Informatics 18: 1176935119828776.

Sundrani, D., Narang, A., Mehendale, S., Joshi, S. & Chava-Gautam, P. 2017. Investigating the expression of MMPs and TIMPs in preterm placenta and role of CpG methylation in regulating MMP‐9 expression. IUBMB Life 69(12): 985-993.

Tchirikov, M., Schlabritz-Loutsevitch, N., Maher, J., Buchmann, J., Naberezhnev, Y., Winarno, A.S. & Seliger, G. 2018. Mid-trimester preterm premature rupture of membranes (PPROM): Etiology, diagnosis, classification, international recommendations of treatment options and outcome. Journal of Perinatal Medicine 46(5): 465-488.

Thompson, J.D., Higgins, D.G. & Gibson, T.J. 1994. CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research 22(22): 4673-4680.

Vadillo-Ortega, F., Hernandez, A., Gonzalez-Avila, G., Bermejo, L., Iwata, K. & Strauss III, J.F. 1996. Increased matrix metalloproteinase activity and reduced tissue inhibitor of metalloproteinases-1 levels in amniotic fluids from pregnancies complicated by premature rupture of membranes. American Journal of Obstetrics and Gynecology 174(4): 1371-1376.

Wang, H., Ogawa, M., Wood, J.R., Bartolomei, M.S., Sammel, M.D., Kusanovic, J.P., Walsh, S.W. Romero, R. & Strauss III, J.F. 2008. Genetic and epigenetic mechanisms combine to control MMP1 expression and its association with preterm premature rupture of membranes. Hum. Mol. Genet 17(8): 1087-1096. doi: 10.1093/hmg/ddm381.

Wang, Z., Lu, S., Liu, C., Zhao, B., Pei, K., Tian, L. & Ma, X. 2010. Expressional and epigenetic alterations of placental matrix metalloproteinase 9 in preeclampsia. Gynecol. Endocrinol. 26(2): 96-102.

Weeding, E., Coit, P., Yalavarthi, S., Kaplan, M.J., Knight, J.S. & Sawalha, A.H. 2018. Genome-wide DNA methylation analysis in primary antiphospholipid syndrome neutrophils.  Clinical Immunology 196: 110-116.

Ørntoft, M.B.W., Jensen, S.Ø., Hansen, T.B., Bramsen, J.B. & Andersen, C.L. 2017. Comparative analysis of 12 different kits for bisulfite conversion of circulating cell-free DNA. Epigenetics 12(8): 626-636.

WHO. 1970. The Prevention of Perinatal Mortality and Morbidity. Geneva: World Health Organization (WHO).

Xu, M., Bian, S., Li, J., He, J., Chen, H., Ge, L., Jiao, Z., Zhang, Y., Peng, W., Du, F., Mo, Y. & Gong, A. 2016. MeCP2 suppresses LIN28A expression via binding to its methylated-CpG islands in pancreatic cancer cells. Oncotarget 7(12): 14476-14485.

Zakar, T. & Paul, J.W. 2020. Fetal membrane epigenetics. Frontiers in Physiology 11: 588539.

Zhang, D., Wu, B., Wang, P., Wang, Y., Lu, P., Nechiporuk, T., Floss, T., Greally, J.M., Zheng, D. & Zhou, B. 2017. Non-CpG methylation by DNMT3B facilitates REST binding and gene silencing in developing mouse hearts. Nucleic Acids Research 45(6): 3102-3115.

Zhang, Q., Xiao, X., Zheng, J., Li, M., Yu, M., Ping, F., Wang, T. & Wang, X. 2019. A maternal high-fat diet induces DNA methylation changes that contribute to glucose intolerance in offspring. Frontier in Endocrinology 10: 871.

 

*Pengarang untuk surat-menyurat; email: mz_nurul@upm.edu.my

 

 

   

sebelumnya