Sains Ma1aysiana 28: 127-139 (1999)                                                                           Sains Fizis dan Gunaan/

                                                                                                                                                Physical and Applied Science


Effective Mass of Band Edges in a  (20)

InAs-(6)Al0.1Ga0.9Sb Superlattice



Geri Kibe AK. Gopir

School of Applied Physics

Universiti Kebangsaan Malaysia

43600 UKM Bangi, Selangor D.E. Malaysia





The curvature method and the f-sum rule are used to calculate the effective mass of electrons and holes at the Brillouin zone band edges of a (20)InAs(6)Al0.1Ga0.9Sb superlattice. The electronic and optical parameters used in the calculations for this type II semiconductor superlattice are derived from the relativistic empirical pseudopotential method. In this superlattice system the calculated effective masses for the carriers are anisotropic and differ from those of the various reported semiconductor heterostructures. These results indicate that the carrier effective masses are dependent on certain factors such as polarisation, constituent layer composition and layer length. The calculated effective masses of electrons in this III- V semiconductor heterostructure are found to be larger than those in Hg1-xCdxTe alloys with similar band gaps corresponding to cutoff wavelengths near 10 μm. This makes the InAs-AlGaSb superlattice system a potential competitor to the present standard material of HgCdTe for far infrared applications.




Kaedah kelengkungan dan aturan hasiltambah-f digunakan untuk mengira jisim berkesan bagi elektron dan lohong pada pinggir-pinggir jalur bagi zon Brillouin dalam superkekisi 20)InAs-(6)Al0.1Ga0.9Sb. Parameter-parameter elektronik dan optik yang diguna bagi superkekisi semikonduktor jenis II ini telah diperolehi dari kaedah pseudokeupayaan empiris relativistik. Dalam sistem superkekisi ini jisim-jisim berkesan kiraan bagi pembawa adalah anisotropik dan berbeza dari yang telah dilaporkan bagi beberapa sistem heterostruktur semikonduktor. Hasil-hasil ini menunjukkan bahawa jisim-jisim berkesan dalam heterostruktur semikonduktor dipengaruhi oleh beberapa faktor tertentu seperti polarisasi, kandungan lapisan dan panjang lapisan bagi bahan-bahan konstituen. Jisim-jisim berkesan kiraan bagi electron-elektron dalam heterostruktur semikonduktor III- V ini adalah lebih besar dari jisim-jisim berkesan bagi elektron-elektron dalam aloi Hg1-xCdxTe pada jurang-jurang jalur yang sepadan dengan jarak gelombang penggalan dekat 10 μm. Ini menjadikan sistem superkekisi InAS-AlGaSb ini berkeupayaan untuk bersaing dengan bahan piawai HgCdTe bagi kegunaan inframerah jauh.





Aschroft, N. W. & Mermin, N. D. 1981. Solid State Physics. Tokyo: Holt-Saunders. Bassani, F. & Pastori-Parravicini, G. 1975. Electron States and Optical Transitions in Solids. New York: Pergamon.

Bastard, G. 1982. Theoretical investigations of superlattice band structure in the envelope-function approximation. Phys. Rev. B25: 7584-7597.

Bloom, S. & Bergstresser, T. K. 1968. Band structure of (-Sn, InSb and CdTe including spin-orbit effects. Solid State Commun. 6: 465-467.

Campbell, I. H., Sela, I., Laurich, B. K., Smith, D. L., Bolognesi, C. R., Samoska, L. A., Gossard, A. C. & Kroemer, H. 1991. Far-infrared photoresponse of the InAs/GaInSb superlattice. Appl. Phys. Lett. 59: 846-848.

Capasso, F. 1987. Graded-gap and superlattice devices by bandgap engineering. Semiconductors and Semimetals. 24: 319-395. Eds. Willardson, R. K. & Beer, A. C. London: Academic.

Chelikowsky, J. R. & Cohen, M. L. 1976. Nonlocal pseudopotential calculations for the electronic structure of eleven diamond and zinc-blende semiconductors. Phys. Rev. B14: 556-582.

Cohen, M. L. & Bergstresser, T. K. 1966. Band structures and pseudopotential form factors for fourteen semiconductors of the diamond and zinc-blende structures. Phys. Rev. 141: 789-796.

Cohen, M. L. & Chelikowsky, J. R. 1989. Electronic structure and optical properties of semiconductors. 2 Ed. Solid State Series. 75. Berlin: Springer-Verlag. Esaki, L., Chang, L. L. & Mendez, E. E. 1981. Polytype superlattices and multi-heterojunctions. Jpn. J. App. Phys. 20: L529-L532.

Hosseini, S. A., Shaw, M. J. & Jaros, M. 1996. Quantitative theory of third-harmonic generation in an (InAs)0.7GaSb)0.3/(A1Sb) superlattice. Phys. Rev. B53: 6988­-6991.

Jaros, M. & Morrison, I. 1990. Addendum: Large optical nonlinearities in semicon­ductor superlattices. Appl. Phys. Lett. 56: 874.

Jaros, M. & Wong, K. B. 1984. New electron states in GaAs-GaxAlxAs superlattice. J. Phys. C: Solid State Phys. 17: L765-L769.

Jaros, M., Wong, K. B. & Gell, M. A. 1985. Electronic structure of GaAs-GaxAlxAs quantum well and sawtooth superlattices. Phys. Rev. B31: 1205-1207.

Johnson, N. F., Ehrenreich, H., Hass, K. C. & McGill, T. C. 1987. f-sum rule and effective masses in superlattices. Phys. Rev. Lett. 59: 2352-2355.

Kittel, C. 1996. Introduction to Solid State Physics. 7 Ed. New York: John Wiley.

Levine, B. F. 1993. Device physics of quantum well infrared photodetectors. Semicond. Sci. Technol. 8: S400-S405.

Miles, R. H., Schulman, J. N., Chow, D. H. & McGill, T. C. 1990. Infrared optical characterization of InAs/Ga1-xInxSb superlattices. Appl. Phys. Lett. 57: 801-803.      

Miles, R. H., Schulman, J. N., Chow, D. H. & McGill, T. C. 1993. Electronic band structure of far-infrared Ga1-xInxSb/InAs superlattices. Semicond. Sci. Technol. 8: S102-S105.

Oettinger, K., Wimbauer, T., Drechsler, M., Meyer, B. K., Hardtdegen, H. & Liith, H. 1996. Dispersion relation, electron and hole effective masses in InxGa1-xAs single quantum wells. J. Appl. Phys. 79: 1481-1485. 

Omaggio, J. P.O., Wagner, R. J., Meyer, J. R., Hoffman, C. A., Yang, M. J., Chow, D. H. & Miles, R. H. 1993. Magneto-optic and magnetotransport study of InAs/   Ga1-xInxSb superlattices. Semicond. Sci. Technol. 8: S112-S116.                                                                                    

Sela, I., Campbell, 1. H., Laurich, B. K., Smith, D. L., Samoska, L. A., Bolognesi, C. R., Gossard, A. C. & Kroemer, H. 1991. Raman scattering study of InAs/GaInSb strained layer superlattices. J. Appl. Phys. 70: 5608-5614

Shaw, M. J. & Jaros, M. 1993. The contributions from virtual processes to the intensity-dependent refractive index of semiconductor superlattices Nonlinear Optics. 6: 27-50.

Shen, S. C. 1993. MCT versus quantum well structures for IR detectors. Semicond. Sci. Technol. 8: S443-S446.

Smith, D. L. & Mailhiot, C. 1987. Proposal for strained type II superlattice infrared detectors. J. Appl. Phys. 62: 2545-2548.

Smith, D. L. & Mailhiot, C. 1988. Strained type II superlattices. Surf. Sci. 196: 683-686.

Smith, D. L. & Mailhiot, C. 1990. Theory of semiconductor superlattice electronic structure. Rev. of Modern Phys. 62: 173-234.

Sze, S. M. 1981. Physics of Semiconductor Devices. New York: John Wiley.

Turton, R. J. 1989. Strained Si-Ge Superlattices. Ph. D. Thesis. University of Newcastle Upon Tyne, United Kingdom.

Van de Walle, C. G. 1989. Band lineups and deformation potentials in the model solid theory. Phys. Rev. B39: 1871-1883.

ViIIaflor, A. B., Yoshizawa, M. & Kimata, M. 1989. Strain accommodation in GaSb/            AlSbsuperlattices on (001) GaSb substrates with AlSb buffers. Jpn. J. App. Phys. 28: L166-L168.

Weisz, G. 1966. Spin-orbit coupling and Fermi surface of white tin. Phys. Rev. 149: 504-517.         

Wong, K. B., Gopir, G. K. A., Hagon, J. P. & Jaros, M. 1994. Absorption coefficient and electric-field-induced localization in InAs-AlGaSb multi-quantum well structures. Semicond. Sci. Technol. 9: 2210-2216.

Yang, M. J., Un-Chung, P. J., Wagner, R. J., Waterman, J. R., Moore, W. J. & Shanabrook, B. V. 1993. Far-infrared spectroscopy in strained AlSb/InAs/AlSb quantum wells. Semicond. Sci. Technol. 8: SI29-S132.