Sains Malaysiana 44(3)(2015): 317–323


Dry Deposition of SO2 over Dry Dipterocarp Forest, Thailand

(Pemendapan Kering SO2 ke atas Hutan Kering Dipterokarpa, Thailand)





1Environmental Technology Division, The Joint Graduate School of Energy and Environment

King Mongkut's University of Technology Thonburi, 126 Pracha U-thit Rd., Bang-Mod

Bangkok 10140, Thailand


2Thailand Institute of Scientific and Technological Research, 235 Moo 3 Technopolis,

Rungsit Nakornayok Rd., Klong 5, Klong-Luang, Pathumthani 12120, Thailand


3Environmental Technology Division, School of Energy Environment and Materials

King Mongkut's University of Technology Thonburi, 126 Pracha U-thit Rd., Bang-Mod

Bangkok 10140. Thailand


4Faculty of Agriculture Field Science Center, Tokyo University of Agriculture and Technology

3-5-8 Saiwai-cho, Fuchu, Tokyo, Japan


Received: 3 June 2014/Accepted: 14 September 2014



The aerodynamic gradient method was applied to estimate dry deposition flux of SO2 over dry deciduous forest in Nakorn Ratchasima province, Thailand. The meteorological parameters and concentrations of SO2 were measured in real time for one year on the experimental tower at 36 and 27 m high. The flux observed in the wet season were found two times higher than the value observed in the dry seasons, i.e. 20±7.58 and 10±11.05 ng m-2 s-1, respectively. The leaf area index and the ambient humidity were believed to assert the rate of SO2 deposition. The average friction velocities were estimated to be 0.26±0.02 and 0.48±0.06 m s¹, for the dry and the wet season, respectively. The friction velocity was very much depended on the surface roughness of the forest canopy. The Vd of SO2 evaluated by the aerodynamic gradient was compared with Vd calculated by the resistance model. It was found that the observed Vd was in close proximity with the model prediction in daytime in all conditions, i.e. wet, dry and annual average. The annual average Vd determined by the Aerodynamic gradient was 0.43±0.06 cm s-1.


Keywords: Aerodynamic gradient; deposition velocity; resistance model; sulfur dioxide



Kaedah kecerunan aerodinamik digunakan untuk menganggarkan pemendapan kering SO2 ke atas hutan kering di wilayah Nakorn Ratchasima, Thailand. Parameter meteorologi dan kepekatan SO2 diukur pada masa sebenar untuk satu tahun di menara eksperimen pada ketinggian 36 dan 27 m. Fluks yang diperhatikan pada musim hujan mempunyai nilai dua kali ganda lebih tinggi daripada nilai yang diperhatikan pada dalam musim kering, iaitu masing-masing pada 20±7.58 dan 10±11.05 ng m-2 s-1. Indeks kawasan daun dan kelembapan sekeliling digunakan untuk mendapatkan kadar pemendapan SO2. Geseran purata kelajuan dianggarkan masing-masing pada 0.26±0.02 dan 0.48±0.06 m s¹ untuk musim kering dan hujan. Halaju geseran sangat bergantung kepada kekasaran permukaan kanopi hutan. Vd SO2 dinilai melalui kecerunan aerodinamik dibandingkan dengan Vd yang dikira melalui model rintangan. Didapati bahawa penilaian Vd hampir sama dengan ramalan model di siang hari dalam semua keadaan, iaitu basah, kering dan purata tahunan. Purata tahunan Vd yang ditentukan melalui kecerunan aerodinamik adalah pada 0.43±0.06 cm s-1.


Kata kunci: Halaju pemendapan; kecerunan aerodinamik; model rintangan; sulfur dioksida


Chimjan, O. & Khummongkol, P. 2012. Evaluation of dry deposition velocity of SO2 by Bowen ratio and resistance model over rice paddy in tropical climate. Sains Malaysiana41(6): 747-754.

Cooper, D.J. & Saltzman, E.S. 1993. Measurements of atmospheric dimethylsulfide, hydrogen sulfide and carbon disulfide during GTE/CITE 3. Geophys. Res. 98: 23397- 23409.

Erisman, J.W. & Baldocchi, D. 1994. Modelling dry deposition of SO2. Tellus 46(B): 157-171.

Erisman, J.W. & Draaijers, G.P.J. 1995. Atmospheric deposition in relation to acidification and eutrophication. Studies in Environmental Science 63: 55-75.

Erisman, J.W., Hogenkamp, J.E.M., Van Putten, E.M., Uiterwijk, J.W., Kemkers, E., Wiese, C.J. & Mennen, M.G. 1999. Long-term continuous measurements of SO2 dry deposition over the speulder forest. Water, Air and Soil Pollution 109: 237-262.

Erisman, J.W., Versluis, A.H., Verplanke, T.A.J.W., de Haan, D., Anink, D., van Elzakker, B.G., Mennen, M.G. & van Aalst, R.M. 1993. Monitoring the dry deposition of SO2 in the Netherlands: Results for grassland and heather vegetation. Atmospheric Environment 27(7): 1153-1161.

Delmas, R. & Servant, J. 1983. Atmospheric balance of sulfur above an equational forest. Tellus Series B. and Chemical Meteorology 35: 110-120.

Feliciano, M.S., Pio, C.A. & Vermeulen, A.T. 2001. Evaluation of SO2 dry deposition over short vegetation in Portugal. Atmospheric Environment 35: 3633-3643.

Fellenberg, G. 2000. The Chemistry of Pollution. London: John Wiley and Sons.

Fowler, D., Pilegaard, K., Sutton, M.A., Ambus, P., Raivonen, M., Duyzer, J., Simpson, D., Fagerli, H., Fuzzi, S., Schjoerring, J.K., Granier, C., Neftel, A., Isaksen, I.S.A., Laj, P., Maione, M., Monks, P.S., Burkhardt, J., Daemmgen, U., Neirynck, J., Personne, E., Wichink-Kruit, R., Butterbach-Bahl, K., Flechard, C., Tuovinen, J.P., Coyle, M., Gerosa, G., Loubet, B., Altimir, N., Gruenhage, L., Ammann, C., Cieslik, S., Paoletti, E., Mikkelsen, T.N., Ro-Poulsen, H., Cellier, P., Cape, J.N., Horváth, L., Loreto, F., Niinemets, Ü., Palmer, P.I., Rinne, J., Misztal, P., Nemitz, E., Nilsson, D., Pryor, S., Gallagher, M.W., Vesala, T., Skiba, U., Brüggemann, N., Zechmeister-Boltenstern, S., Williams, J., O’Dowd, C., Facchini, M.C., de Leeuw, G., Flossman, A., Chaumerliac, N. & Erisman, J.W. 2009. Atmospheric composition change: Ecosystems-Atmosphere interactions. Atmospheric Environment 43: 5193-5267.

Granat, L. & Richter, A. 1995. Dry deposition to pine of sulphur dioxide and ozone at low concentration. Atmospheric Research 29: 1677-1683.

Hayashi, K., Matsuda, K., Takahashi, A. & Nakaya, K. 2011. Atmosphere-forest exchange of ammoniacalitrogen in a subalpine decidous forest in Central Japan during a summer week. Asian Journal of Atmospheric Environment 5-2: 134-143.

Hicks, B.B., Baldocchi, D.D., Meyers, T.P., Hosker Jr., P.R. & Matt, D.R. 1987. A preliminary multiple resistance routine for deriving dry deposition velocities from measured quantities. Water, Air, and Soil Pollution 36: 311-330.

Horvath, L., Nagy, Z. & Weidinger, T. 1998. Estimation of dry deposition velocity of nitric oxide, sulfur dioxide, and ozone by the gradient method above short vegetation during the TRACT campaign. Atmospheric Environment 32: 1317-1322.

Jitto, P., Vinitnantarat, S. & Khummongkol, P. 2007. Dry deposition velocity of sulfur dioxide over rice paddy in tropical region. Atmospheric Research 85: 140-147.

Matsuda, K., Sase, H., Murao, N., Fukazawa, T., Khoomsub, K., Chanonmuang, P., Visaratana, T. & Khummongkol, P. 2012. Dry and wet deposition of elemental carbon on a tropical forest in Thailand. Atmospheric Environment 54: 282-287.

Matsuda, K., Fujimura, Y., Hayashi, K., Takahashi, A. & Nakaya, K. 2010. Deposition velocity of PM2.5 sulfate in the summer above a deciduous forest in central Japan. Atmospheric Environment 44: 4582-4587.

Matsuda, K., Watanabe, I., Wingpud, V., Theramongkol, P. & Ohizumi, T. 2006. Deposition velocity of O3 and SO2 in the dry and wet season above a tropical forest in northern Thailand. Atmospheric Environment 40: 7557-7564.

Matsuda, K., Watanabe, I., Vitsanu, W., Phunsak, K., Pojanie, K., Supat, W. & Totsuka, T. 2005. Ozone dry deposition above a tropical forest in the dry season in northern Thailand. Atmospheric Environment 39: 2571-2577.

Matsuda, K., Aoki, M., Zhang, S., Kominami, T., Fukuyama, T., Fukuzaki, N. & Totsuka, T. 2002. Dry deposition velocity of sulfur dioxide on a red pine forest in Nagano, Japan. Society for Atmospheric Environment 37: 387-392.

Matsuda, K., Fukuzaki, N. & Maeda, M. 2001. A case study on estimation of dry deposition of sulfur and nitrogen compounds by inferential method. Water, Air and Soil Pollution 130: 553-558.

Myles, L.T., Meyer, T.P. & Robinson, L. 2007. Relaxed eddy accumulation measurements of ammonia, nitric acid, sulfur dioxide and particulate sulfate dry deposition near Tampa, FL, USA. Environmental Research Letters 2: 034004.

Padro, J. 1993. Seasonal contrasts in modeled and observed dry deposition velocities of O3, SO2 and NO2 over surfaces. Atmospheric Environment 27: 807-814.

Rodhe, H. 1978. Budgets and turn-over times of atmospheric sulfur compounds. Atmospheric Environment 12(1-3): 671- 680.

Sorimachi, A., Sakamoto, K., Ishihara, H., Fukuyama, T., Utiyama, M., Liu, H., Wang, W., Tang, D., Dong, X. & Quan, H. 2003. Measurements of sulfur dioxide and ozone dry deposition over short vegetation in northern China - A preliminary study. Atmospheric Environment 37: 3157-3166.

Thornton, D.C., Bandy, A.R., Blomquist, B.W., Davis, D.D. & Talbot, R.W. 1996. Sulfur dioxide as a source of condensation nuclei in the upper troposphere of Pacific Ocean. Geophys. Res. 101: 1883-1890.

Tsai, J.L., Chen, C.L., Tsuang, B.J., Kuo, P.H., Tseng, K.H., Hsu, T.F., Sheu, B.H. & Liu, C.P. 2010. Observation of SO2 dry deposition velocity at a high elevation flux tower an evergreen broadleaf forest in Central Taiwan. Atmospheric Environment 44: 1011-1019.

Wesley, M.L. & Hicks, B.B. 2000. A review of the current status of knowledge on dry deposition. Atmospheric Environment 34: 2261-2282.

Xu, Y. & Carmichael, G.R. 1998a. An assessment of sulfur deposition pathways in Asia. Atmospheric Environment 33(21): 3473-3486.

Xu, Y. & Carmichael, G.R. 1998b. Modeling the dry deposition velocity of sulfur dioxide and sulfate in Asia. Applied Meteorology and Climatology 37(10): 1084-1099.

Zhang, L., Brook, J.R. & Vet, R. 2003. Evaluation of a non-stomatal resistance parameterization for SO2 dry deposition. Atmospheric Environment 37: 2941-2947.



*Corresponding author; email: