Sains Malaysiana 46(10)(2017): 1935–1942

http://dx.doi.org/10.17576/jsm-2017-4610-32

 

Synthesis of γ-Fe2O3, Fe3O4 and Copper Doped Fe3O4 Nanoparticles by Sonochemical Method

(Sintesis γ-Fe2O3, Fe3O4 dan Tembaga Terdop dengan Nanopartikel Fe3O4 melalui Kaedah Sonokimia)

 

KANNUSAMY MOHANRAJ1* & GANESAN SIVAKUMAR2

 

1Department of Physics, Manonmaniam Sundaranar University, Tirunelveli-627 012, Tamilnadu, India

 

2CISL, Department of Physics, Annamalai University, Annamalai Nagar-608 002, Tamilnadu, India

 

Received: 10 February 2014/Accepted: 1 March 2017

 

ABSTRACT

Nanoparticles of undoped and copper doped with Fe3O4 of three concentrations (0.5, 1.0 and 1.5) are synthesized by sonochemical method. Structural, optical and morphological properties of these compounds were studied. Fe2+/Fe3+ ratio is found to be 2.36. Crystalline structure, lattice parameters, surface morphologies, direct and indirect band gap energies of the synthesized compounds were estimated and the results are discussed in detail. The XDR analysis indicates the Cu doped Fe3O4 nanoparticles have higher crystallinity than undoped samples. Average crystallite size is found to increase as Cu concentration increased. The FTIR results are proven by the presence of mixed magnetite-hematite nanostructures and it is complement to the XRD results. The presence of spherical, polygonal and agglomeration forms of the particles are visually seen in the SEM images. Direct and indirect band gap energy is found to be decreased as the copper concentration was increased.

 

Keywords: Copper; Fe2+/Fe3+ ratio; magnetite; sonochemical

 

ABSTRAK

Nanopartikel yang tidak terdop dan tembaga yang didop dengan tiga kepekatan Fe3O4 (0.5, 1.0 dan 1.5) disintesis oleh kaedah sonokimia. Struktur, sifat optik dan morfologi sebatian ini dikaji. Nisbah Fe2+/Fe3+ yang diperoleh adalah 2.36. Struktur kristal, parameter kisi, morfologi permukaan, tenaga jurang jalur langsung dan tidak langsung daripada sebatian yang disintesis telah dianggarkan dan hasilnya dibincangkan secara terperinci. Analisis XDR menunjukkan bahawa Cu terdop dengan nanopartikel Fe3O4 mempunyai kristalografi yang lebih tinggi daripada sampel yang tidak terdop. Ukuran purata kristal didapati meningkat apabila kepekatan Cu meningkat. Keputusan FTIR dibuktikan oleh kehadiran struktur nano hematit magnetit yang bercampuran dan ia pelengkap kepada keputusan XRD. Kehadiran bentuk sfera, poligon dan aglomerasi zarah dapat dilihat secara visual dalam imej SEM. Tenaga jurang jalur langsung dan tidak langsung didapati menurun kerana peningkatan kepekatan tembaga.

 

Kata kunci: Magnetit; nisbah Fe2+/Fe3+; sonokimia; tembaga

REFERENCES

Cabrera, L., Gutiérrez, S., Herrasti, P. & Reyman, D. 2010. Sonoelectrochemical synthesis of magnetite. Physics Procedia 3: 89-94.

Conceicao, T.F.D., Scharnag, l.N., Blawert, C., Dietzel, W. & Kainer, K.U. 2010. Surface modification of magnesium alloy AZ31 by hydrofluoric acid treatment and its effect on the corrosion behavior. Thin Solid Films 518: 5209-5218.

Cong, Y., Wang, G., Xiong, M., Huang, Y., Hong, Z., Wang, D., Li, D. & Li, L. 2008. A facile interfacial reaction route to prepare magnetic hollow spheres with tunable shell thickness. Langmuir 24: 6624-6629.

Cornell, R.M. & Schwertmann, U. 2003. The Iron Oxide: Structure, Properties, Reaction, Occurrences and Uses. 2nd ed. (Chapter 6). Federal Republic of Germany: Wiley-VCH Verlag GmbH.

Dang, F., Enomoto, N., Hojo, J. & Enpuku, K. 2009. Sonochemical synthesis of monodispersed magnetite nanoparticles by using an ethanol-water mixed solvent. Ultrasonics Sonochemistry 16: 649-654.

Darezereshki, E. 2011. One-step synthesis of hematite (α-Fe2O3) nanoparticles by direct thermal- decomposition of maghemite. Materials Letter 65: 642-645.

Darezereshki, E., Ranjibar, M. & Bakhitiari, F. 2010. One-step synthesis of maghemite (γ-Fe2O3) nanoparticles by wet chemical method. Journals of Alloy Compounds 502: 257- 260.

Ghandoor, H.E., Zidan, H.M., Khalil, M.M.H. & Ismail, M.I.M. 2012. Synthesis and some physical properties of magnetite nanoparticles. International Journal of Electrochemical Science 7: 5734-5745.

Gupta, R., Sood, A.K., Metcalf, P. & Honig, J.M. 2002. Raman study of stoichiometric and Zn-doped Fe3O4. Physics Review B 65: 104430-104438.

Hasanpour, A., Niyaifar, M. & Asan, M. 2012. Synthesis and characterization of Fe3O4 & ZnO nanocomposites by sol-gel method. Proceedings of the 4th International Conferences on Nanostructures (ICNS4), 12-14 March. pp. 205-207.

Hastings, J.M. & Corliss, L.M. 1956. Neutron diffraction study of manganese ferrite. Physics Review 104: 329-331.

Hou, Y., Yu, J. & Gao, S. 2003. Solvothermal reduction synthesis and characterization of superparamagnetic magnetite nanoparticles. Journal of Material Chemistry 13: 1983-1987.

Laurent, S., Forge, D., Port, M., Roch, A., Robic, C., Elst, L.V. & Mullerm, R.N. 2008. Magnetic iron oxide nanoparticles: Synthesis, stabilization, vectorization, physicochemical characterizations and biological applications. Chemistry Review 108: 2064-2110.

Liu, S.H., Tai, H.M., Pao, C.W., Chiou, J.W., Ling, D.C., Pong, W.F., Tasi, M-H., Lin, H.J., Jang, L.Y., Lee, J.F., Hsu, J.H., Wang, W.J. & Hsu, C.J. 2006. Electronic and magnetic properties of the Ag-doped Fe3O4 films studied by X-ray absorption spectroscopy. Applied Physics Letter 89: 092112.

Lodhia, J., Mandarano, G., Ferris, N.J., Eu, P. & Cowell, SF. 2010. Development and use of iron oxide nanoparticles (Part1): Synthesis of iron oxide nanoparticles for MRI. Biomedical Imaging and Intervention Journal 6: e12.

Roshan, A.H., Vaezi, M.R., Shokuhfur, A. & Rajabali, Z. 2011. Synthesis of iron oxide nanoparticles via sonochemical method and their characterization. Particuology 9: 95-99.

Sun, J., Zhou, S., Hou, P., Yang, Y., Weng, J., Li, X. & Li, M. 2006. Synthesis and characterization of biocompatible Fe3O4 nanoparticles. Journal of Biomedical Materials Research Part A 80(2): 333-341.

Tan, J., Yang, L., Kang, Q. & Cai, Q. 2011. In situ ATR-FTIR and UV-visible spectroscopy study of photocatalytic oxidation of ethanol over TiO2 nanotubes. Analytical Letters 44: 1114-1125.

Tang, J., Myers, M., Bosnick, K.A. & Brus, L.E. 2003. Magnetic Fe3O4 nanocrystals: Spectroscopic observation of aqueous oxidation kinetics. Journal of Physical Chemistry B 107: 7501-7506.

Tripathy, D., Adeyeye, A.O., Boothroyd, C.B. & Shannigrahi, S. 2008. Microstructure and magneto transport properties of Cu doped Fe3O4 films. Journal of Applied Physics 103: 07F701-07F703.

Tripathy, D., Adeyeye, A.O., Boothroyd, C.B. & Piramanmayagam, S.N. 2007. Magnetic and transport properties of Co-doped Fe3O4 films. Journal of Applied Physics 101: 013904.

Varshney, D., Verma, K. & Yogi, A. 2011. Structural and magnetic properties of Mn and Zn doped Fe3O4 nanoparticles. AIP Conference Proceedings 1349: 253-254.

Wang, X., Hu, C.G., Xi, Y., Xia, C.H. & He, X.S. 2010. Al-doped Fe3O4 nanoparticles and their magnetic properties. Journal of Superconductivity and Novel Magnetism 23: 909-911.

Wu, S., Sun, A., Zhai, F., Wang, J., Xu, W., Zhang, Q. & Volinsky, A.A. 2011. Fe3O4 magnetic nanoparticles synthesis from tailings by ultrasonic chemical co-precipitation. Materials Letters 65: 1882-1884.

Zarzosa, G.O., Martinez, J.R., Espinos, O.D., Ruiz, F. & Aquino, J.A.M. 2000. Formation of copper based particles trapped in a silica xerogel matrix. Superficies y vacio 11: 61-65.

 

 

*Corresponding author; email: kmohanraj.msu@gmail.com

 

 

 

 

 

 

previous