Sains Malaysiana 49(9)(2020): 2197-2210

http://dx.doi.org/10.17576/jsm-2020-4909-17

 

Improvement of Fatigue Resistance of Epoxy Composite with Heterogeneous Solid-State Self-Healing System

(Peningkatan Ketahanan Kelesuan Komposit Epoksi dengan Sistem Penyembuhan Diri Keadaan Pepejal Heterogen)

 

MOHD SUZEREN MD JAMIL*, WAN NAQIUDDIN WAN ZULRUSHDI & NOOR NABILAH MUHAMAD

 

Department of Chemical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

Received: 15 October 2019/Accepted: 8 May 2020

 

Abstract

The purpose of this research study was to investigate the improvement in fatigue life parameters and static strength residues of heterogeneous solid-state of the self-healing resin after exposure to fatigue cycles. The healing system is based on the thermoplastic-thermosetting semi-interpenetrating network. This system employs a thermosetting resin, into which a linear thermoplastic of poly(vinyl chloride) (PVC), poly(vinyl alcohol) (PVA), polyethylene (PE) or polypropylene (PP) as is dissolved. Upon heating a fractured resin system at a specific temperature, the heterogeneous resin blend undergoes a volumetric thermal expansion of healing agent within the matrix resin for crack recovery. Under the Compact tension (CT) test and within the third healing cycle, the modified resin with PVC has the average percentage recovery of 75-48% compared with PP, PE, or PVA at around 67-31%, respectively. The modified epoxy fatigue life with PVC and PP was shown to be increased by a factor of about 1.5 and 1.1 times after healing periods. The healable (modified) resin also showed an improvement in residual strength than the control resin after exposure to fatigue cycles. The fatigue-healing process was proven through the surface and cross-section resin morphology analysis using a microscopy optic and scanning electron microscope (SEM). On the whole, the heterogeneous solid-state self-healing system has proven to be effective in obstructing fatigue crack propagation, effectively improved the self-healing polymeric material to achieve higher life extension.

 

Keywords: Fatigue life; healing agent; heterogeneous; residual strength; self-healing resin

 

ABSTRAK

Fokus penyelidikan ini adalah untuk mengkaji peningkatan dalam parameter jangka hayat kelesuan dan residu kekuatan statik bagi swapemulihan resin heterogen dalam keadaan pepejal selepas terdedah kepada kitaran muatan lesu. Sistem pemulihan ini adalah berdasarkan kepada penembusan/peresapan sebahagian rangkaian termoplastik-termoset. Sistem ini menggunakan resin termoset yang dilarutkan bersama termoplastik poli(vinil klorida) (PVC), poli(vinil alkohol) (PVA), polietilena (PE) atau polipropilena (PP). Apabila sistem resin yang mengalami keretakan dipanaskan pada suhu tertentu, campuran resin heterogen ini akan mengalami pengembangan volumetrik termal pada agen pemulihan dalam matriks resin untuk pemulihan keretakan. Di bawah ujian tegangan padat (CT) dan dalam kitaran pemulihan ketiga, resin yang diubah suai dengan PVC mempunyai purata peratus pemulihan tertinggi sebanyak 75-48% berbanding dengan PP, PE, atau PVA pada 67-31%. Kesan pemanjangan hayat kelesuan bagi resin yang diubah suai bersama PVC atau PP menunjukkan peningkatan dalam faktor masa sekitar 1.5 dan 1.1 kali selepas tempoh pemulihan. Resin pemulihan (terubah suai) ini juga menunjukkan peningkatan kekuatan bahan berbanding resin kawalan selepas didedahan kepada kitaran muatan lesu. Proses pemulihan kelesuan dibuktikan melalui analisis morfologi pada permukaan dan keratan rentas resin menggunakan mikroskop optik dan mikroskop elektron pengimbasan (SEM). Secara keseluruhannya, sistem swapemulihan resin heterogen dalam keadaan pepejal telah dibuktikan berkesan dalam menghalang penyebaran keretakan lesu dan dapat memperbaiki swa-pemulihan bahan polimer secara berkesan untuk peningkatan jangka hayat yang lebih tinggi.

 

Kata kunci:  Agen pemulihan; hayat lesu; heterogen; kekuatan residu; swapemulihan resin

 

REFERENCES

Anja, G., Michael, B., Pavel, H., Ondrej, S. & Gerald, P. 2020. Mixed mode I/III fatigue fracture characterization of polyoxymethylene. International Journal of Fatigue 130: 245-269.

ASTM-D638. 2003. Standard Test Method for Tensile Properties of Plastics. American Society for Testing and Materials.

ASTM-D3479M. 2003. Standard Test Method for Tension-Tension Fatigue of Polymer Matrix Composite Materials. American Society for Testing and Materials.

Awaja, F., Zhang, S., Tripathi, M., Nikiforov, A. & Pugno, N. 2016. Cracks, microcracks and fracture in polymer structures: Formation, detection, autonomic repair. Progress in Materials Science 83: 536-573.

Blaiszik, B.J., Kramer, L.B., Olugebefola, S.C., Moore, J.S., Sottos, N.R. & White, S.R. 2010. Self-healing polymers and composites. Annual Review of Materials Research 40: 179-211.

Brown, E.N., White, S.R. & Sottos, N.R. 2005. Retardation and repair of fatigue cracks in a microcapsule toughened epoxy composite- Part II: In situ self-healing. Composites Science and Technology 65(15-16): 2474-2480.

BS-13586. 2000. Plastics- Determination of Fracture Toughness (G1C and K1C) - Linear Elastic Fracture Mechanics (LEFM) Approach. British Standards Institute.

Gyarmati, B., Szilágyi, B.Á. & Szilágyi, A. 2017. Reversible interactions in self-healing and shape memory hydrogels. European Polymer Journal 93: 642-669.

Hamilton, A.R., Sottos, N.R. & White, S.R. 2012. Mitigation of fatigue damage in self-healing vascular materials. Polymer 53(24): 5575-5581.

Hayes, S.A., Jones, F.R., Marshiya, K. & Zhang, W. 2007. A self-healing thermosetting composite material. Composites A: Applied Science and Manufacturing 38(4): 1116-1120.

Hirschberg, V., Lacroix, F., Wilhelm, M. & Rodrigue, D. 2019. Fatigue analysis of brittle polymers via Fourier transform of the stress. Mechanics of Materials 137: 103-110.

Jamil, M.S.M., Jones, F.R., Muhammad, N.N. & Makenan, S.M. 2015a. Solid-state self-healing systems: The diffusion of healing agent for healing recovery. Sains Malaysiana 44(6): 843-852.

Jamil, M.S.M., Makenan, S.M., Muhamad, N.N., Lazim, A.M. & Jones, F. 2015b. Mechanistic studies of solid state self-healing systems. Malaysian Journal of Analytical Sciences 19(2): 428-436.

Kanu, N.J., Gupta, E., Vates, U.K. & Singh, G.K. 2019. Self-healing composites: A state-of-the-art review. Composites Part A: Applied Science and Manufacturing 121: 474-486.

Katunin, A. & Wronkowicz, A., 2017. Evolution of a fracture mechanism in a polymeric composite subjected to fatigue with the self-heating effect. Procedia Structural Integrity 5: 416-421.

Kim, S.Y., Sottos, N.R. & White, S.R. 2019. Self-healing of fatigue damage in cross-ply glass/epoxy laminates. Composites Science and Technology 175: 122-127.

Kostopoulos, V., Kotrotsos, A., Sousanis, A. & Sotiriadis, G. 2019. Fatigue behaviour of open-hole carbon fibre/epoxy composites containing bis-maleimide based polymer blend interleaves as self-healing agent. Composites Science and Technology 171: 86-93.

Kullmer, G., Reschetnik, W., Schramm, B. & Richard, H.A. 2016. Fatigue crack growth near regions with differing stiffness. Procedia Structural Integrity 2: 2994-3001.

Lee, M.W., An, S., Yoon, S.S. & Yarin, A.L. 2018. Advances in self-healing materials based on vascular networks with mechanical self-repair characteristics. Advances in Colloid and Interface Science 252: 21-37.

Luo, X.F., Ou, R.Q., Eberly, D.E., Singhal, A., Viratyaporn, W. & Mather, P.T. 2009. A thermoplastic/thermoset blend exhibiting thermal mending and reversible adhesion. ACS Applied Materials & Interfaces 1(3): 612-620.

Meure, S., Varley, R.J., Wu, D.Y., Mayo, S., Nairn, K. & Furman, S. 2012. Confirmation of the healing mechanism in a mendable EMAA-epoxy resin. European Polymer Journal 48(3): 524-531.

Michael, B., Hartmut, R.F. & Santiago, J.G. 2019. Self-healing polymeric systems: Concepts and applications. In Smart Polymers and their Applications, edited by Maria, R.A. & Julio, S.R. New York: Woodhead Publishing.

Muhamad, N.N. & Jamil, M.S. 2016. Homogeneous and heterogeneous solid state self-healing system. Polymers and Polymer Composites 24(9): 815-824.

Murphy, E.B. & Wudl, F. 2010. The world of smart healable materials. Progress in Polymer Science 35(2): 223-251.

Sharma, J., Tewari, K. & Arya, R.K. 2017. Diffusion in polymeric systems - A review on free volume theory. Progress in Organic Coatings 111: 83-92.

Skinner, T., Datta, S., Chattopadhyay, A. & Hall, A. 2019. Fatigue damage behavior in carbon fiber polymer composites under biaxial loading. Composites Part B: Engineering 174: 936-942.

Urdl, K., Kandelbauer, A., Kern, W., Müller, U., Thebault, M. & Zikulnig-Rusch, E. 2017. Self-healing of densely crosslinked thermoset polymers - A critical review. Progress in Organic Coatings 104: 232-249.

Ye, X.J., Zhu, Y., Yuan, Y.C., Song, Y.X., Yang, G.C., Rong, M.Z. & Zhang, M.Q. 2017. Improvement of fatigue resistance of epoxy composite with microencapsulated epoxy-SbF5 self-healing system. Express Polymer Letters 11(11): 853-862.

Zhang, C., Wang, H. & Zhou, Q. 2018. Preparation and characterization of microcapsules based self-healing coatings containing epoxy ester as healing agent. Progress in Organic Coatings 125: 403-410.

Zhang, P. & Li, G. 2016. Advances in healing-on-demand polymers and polymer composites. Progress in Polymer Science 57: 32-63.

 

*Corresponding author; email: suzeren@ukm.edu.my

   

 

 

previous