Sains Malaysiana 50(2)(2021): 515-523

http://dx.doi.org/10.17576/jsm-2021-5002-22

 

Image Reversal Resist Photolithography of Silicon-Based Platinum and Silver Microelectrode Pattern

(Fotolitografi Tahan Pembalikan Imej Silikon Berasaskan Corak Mikroelektrod Platinum dan Perak)

 

NURULHAIDAH DAUD1*, NOR FARHAH RAZAK1, NORMAHIRAH NEK ABD RAHMAN1, AZIZAH MOHD ZAHIDI1, CHIN SIEW XIAN1, TENGKU ELMI AZLINA TENGKU MUDA1 & MOHD ISMAHADI SYONO2

 

1Pusat GENIUS@Pintar Negara, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

2Nano Semiconductor Technology, Mimos Berhad, Technology Park Malaysia, 57000 Kuala Lumpur, Malaysia

 

Received: 27 July 2018/Accepted: 11 July 2020

 

ABSTRACT

Silicon-based platinum (Pt) and silver (Ag) microelectrodes are constructed using photolithography technique and used in detecting arsenic activity in different electrolytes. Pt and Ag have good properties either as a working, a counter, or a reference electrode due to their low electrical resistance, high melting point, and high chemical stability. This chemical sensor has the ability to detect the changes in the level or activity of arsenic in electrolytes. Patterning these metals by wet chemical or dry etching is not a feasible process as these metals cannot be etched properly. The lift-off process can be applied to ease the etching process, but it has a major problem whereby the metal particles or ears may remain at the edges at the end of the process. The process variables, particularly the resist slope, were investigated to reduce possible defects using an image reversal resist. The thickness and angle of the resist side wall were measured by SEM. The effects of many factors that may influence or resist steep angle formation were analyzed and optimized with the Design of Experiment (DOE) technique to achieve the target recipe of resist angle < 60°. The lower angle of the resist side wall resulted in a better percentage yield of good electrode pattern after the lift-off process. The ability of fabricated microelectrode and influence of supporting electrolytes in arsenic determination were discussed.

 

Keywords: Lift-off; metal ear; photolithography; resist slope

 

ABSTRAK

Silikon berasaskan corak mikroelektrod platinum dan perak telah dibangunkan menggunakan teknik fotolitografi tahan pembalikan imej dan diuji dalam ujian awal dengan kitaran voltammetri. Membuat corak logam ini dengan bahan kimia basah atau kering bukanlah proses yang wajar kerana logam ini tidak dapat terukir dengan betul. Proses pengangkatan dalam fotolitografi dapat diaplikasikan untuk memudahkan proses pemunaran, tetapi ia mempunyai masalah besar kerana zarah logam atau telinga logam mungkin berada di tepi corak elektrod di akhir proses. Pemboleh ubah proses, terutamanya kemerosotan rintang dikaji untuk mengurangkan kemungkinan kecacatan menggunakan penentangan pembalikan imej. Ketebalan dan sudut dinding sisi rintang diukur dengan mikroskop elektron imbasan (SEM). Kesan daripada banyak faktor yang dapat mempengaruhi pembentukan sudut curam rintang dianalisis dan dioptimumkan dengan teknik Reka Bentuk Uji Kaji (DOE) untuk mencapai resipi sasaran sudut menolak  60°. Sudut bawah dinding sisi rintang menghasilkan hasil peratusan yang lebih baik bagi corak elektrod yang baik setelah proses mengangkat. Keupayaan mikroelektrik fabrikan dan pengaruh elektrolit pendukung dalam penentuan arsenik telah dibincangkan.

 

Kata kunci: Fotolitografi; logam telinga; pengangkatan; sudut penentangan

 

REFERENCES

Aziz, N.A., Buyong, M.R. & Majlis, B.Y. 2009. Process characterization of wet etching for high aspect ratio microneedles development. Advanced Materials Research 74: 341-344.

Basri, N.H., Deraman, M., Daik, R., Ayob, M.T.M., Sahri, M.I., Nor, N.S.M., Dolah, B.N.M. & Soltaninejad, S. 2015. Electrochemical impedance spectroscopy study of supercapacitors using deposited nickel oxide nanoparticles carbon monolith electrodes. Advanced Materials Research 1112: 236-240.

Basri, N.H., Deraman, M., Kanwal, S., Talib, I.A., Manjunatha, J.G., Aziz, A.A. & Farma, R. 2013. Supercapacitors using binderless composite monolith electrodes from carbon nanotubes and pre-carbonized biomass residues. Biomass and Bioenergy 59: 370-379.

Çiftyürek, E., Sabolsky, K. & Sabolsky, E.M. 2013. Platinum thin film electrodes for high-temperature chemical sensor applications. Sensors and Actuators B: Chemical 181: 702-714.

Daud, N., Yusof, N.A. & Nor, S.M.M. 2013. Electrochemical characteristic of biotinyl somatostatin-14/nafion modified gold electrode in development of sensor for determination of Hg (II). International Journal of Electrochemical Science 8(7): 10086-10099.

Daud, N., Yusof, N.A., Tee, T.W. & Abdullah, A.H. 2012. Electrochemical sensor for As(III) utilizing CNTs/leucine/nafion modified electrode. International Journal of Electrochemical Science 7: 175-185.

Desa, M.M., Sapeai, S., Azhari, A.W., Sopian, K., Sulaiman, M.Y., Amin, N. & Zaidi, S.H. 2016. Silicon back contact solar cell configuration: A pathway towards higher efficiency. Renewable and Sustainable Energy Reviews 60: 1516-1532.

Elgrishi, N., Rountree, K.J., McCarthy, B.D., Rountree, E.S., Eisenhart, T.T. & Dempsey, J.L. 2018. A practical beginner’s guide to cyclic voltammetry. Journal of Chemical Education 95(2): 197-206.

Firebaugh, S.L., Jensen, K.F. & Schmidt, M.A. 1998. Investigation of high-temperature degradation of platinum thin films with an in situ resistance measurement apparatus. Journal of Microelectromechanical Systems 7(1): 128-135.

Gritzner, G. & Kůta, J. 1984. Recommendations on reporting electrode potentials in nonaqueous solvents. Pure and Applied Chemistry 56(4): 461-466.

Hamdan, M.S., Nordin, N. & Amir, S.F.M. 2011. Electrochemical behaviour of Ni and Ni-PVC electrodes for the electroxidation of ethanol. Sains Malaysiana 40(12): 1421-1427.

Hutagalung, S.D., Lew, K.C. & Darsono, T. 2014. Nanoscale patterning by AFM lithography and its application on the fabrication of silicon nanowire devices. Sains Malaysiana 43(2): 267-272.

Jasni, M.R.M., Deraman, M., Zainuddin, Z., Hua, C.C. & Omar, R. 2019. Elektrod superkapasitor daripada komposit karbon teraktif dan grafen dengan perekat PVDF-HFP. Sains Malaysiana 48(2): 407-417.

Karim, N.A. & Kamarudin, S.K., 2013. An overview on non-platinum cathode catalysts for direct methanol fuel cell. Applied Energy 103: 212-220.

Martinez-Quijada, J., Caverhill-Godkewitsch, S., Reynolds, M., Gutierrez-Rivera, L., Johnstone, R.W., Elliott, D.G., Sameoto, D. & Backhouse, C.J. 2013. Fabrication and characterization of aluminum thin film heaters and temperature sensors on a photopolymer for lab-on-chip systems. Sensors and Actuators A: Physical 193: 170-181.

Patel, S.V., DiBattista, M., Gland, J.L. & Schwank, J.W. 1996. Survivability of a silicon-based microelectronic gas-detector structure for high-temperature flow applications. Sensors and Actuators B: Chemical 37(1-2): 27-35.

Samad, S., Loh, K.S., Wong, W.Y., Lee, T.K., Sunarso, J., Chong, S.T. & Daud, W.R.W. 2018. Carbon and non-carbon support materials for platinum-based catalysts in fuel cells. International Journal of Hydrogen Energy 43(16): 7823-7854.

Shaari, N. & Kamarudin, S.K. 2019. Recent advances in additive‐enhanced polymer electrolyte membrane properties in fuel cell applications: An overview. International Journal of Energy Research 43(7): 2756-2794.

Škriniarová, J., Pudiš, D., Andok, R., Lettrichová, I. & Uherek, F. 2017. Investigation of the AZ 5214E photoresist by the laser interference, EBDW and NSOM lithographies. Applied Surface Science 395: 226-231.

Taer, E., Deraman, M., Talib, I.A., Hashmi, S.A. & Umar, A.A. 2011. Growth of platinum nanoparticles on stainless steel 316L current collectors to improve carbon-based supercapacitor performance. Electrochimica Acta 56(27): 10217-10222.

Yusof, N.A., Daud, N., Tee, T.W. & Abdullah, A.H. 2011. Electrocatalytic characteristic of carbon nanotubes/glutamine/nafion modified platinum electrode in development of sensor for determination of As(III). International Journal of Electrochemical Science 6: 2385-2397 .

 

*Corresponding author; email: nurulhaidah@ukm.edu.my

   

 

 

previous