Sains Malaysiana 50(2)(2021): 525-536

http://dx.doi.org/10.17576/jsm-2021-5002-23

 

Effects of %FIMA on Storage-Safety Parameters of Spent Fuel from Experimental Pebble-Bed Reactor

(Kesan %FIMA terhadap Parameter Keselamatan Penyimpanan Bahan Api Terpakai daripada Uji Kaji Reaktor Pengalas Kerikil)

 

AISYAH AISYAH1, MIRAWATY MIRAWATY1, DWI LUHUR IBNU SAPUTRA1, RISDIYANA SETIAWAN1, PUNGKY AYU ARTIAN1, RATIKO RATIKO1* & NASRUDDIN NASRUDDIN2

 

1Center for Radioactive Waste Technology (PTLR), National Nuclear Energy Agency of Indonesia, (BATAN), Indonesia

 

2Department of Mechanical Engineering, Universitas Indonesia, Indonesia

 

Received: 17 February 2020/Accepted: 22 July 2020

 

ABSTRACT

The back end of the utilization of nuclear technology is safety and management of spent fuel, which is a key element contributing to the success of the nuclear power plant program. Indonesia’s National Nuclear Energy Agency resolved to establish an experimental power reactor, called RDE, as a nuclear power plant demo. The fuel of this reactor is similar to that of German’s experimental pebble-bed reactor (PBR), Arbeitsgemeinschaft Versuchs Reactor (AVR). In this study, the spent fuel of AVR was studied to obtain the safety parameter data for storage of RDE spent fuel by varying the fission in the initial metallic atoms (%FIMA). These parameters that must be studied include the radioactivity, decay heat, proliferation threats of both 239Pu and 235U, and the presence of 137Cs, a dangerous fission product that can escape from damaged spent fuels. The calculation was conducted by ORIGEN 2.1. The result of the study demonstrates a higher %FIMA indicates a higher safety level that is required since the activity and decay heat of the spent fuel will increase and, as will be the total amounts of 239Pu and 137Cs. However, the 235U amount will decrease. For a 100 years storage of spent fuel, the optimum %FIMA is 8.2 with a canister capacity of 1,900 pebbles. Further, the activity and decay heat of the spent nuclear fuel are 2.013 × 1013 Bq and 6.065 W, respectively. The activities of 239Pu, 137Cs, and 235U are 5.187 × 1011, 7.100 × 1012, and 7.339 × 107 Bq, respectively.

 

Keywords: %FIMA; pebble-bed reactor; spent fuel; spent-fuel storage safety

 

ABSTRAK

Kesan jangka panjang manfaat daripada teknologi nuklear adalah keselamatan dan pengurusan bahan bakar terpakai yang merupakan unsur utama kepada kejayaan program loji tenaga nuklear. Agensi Tenaga Nuklear Nasional Indonesia memutuskan untuk membangun reaktor tenaga uji kaji yang disebut sebagai RDE sebagai demo loji tenaga nuklear. Bahan bakar reaktor ini mirip dengan reaktor pengalas kerikil uji kaji Jerman (PBR), Arbeitsgemeinschaft Versuchs Reaktor (AVR). Dalam kajian ini, bahan bakar terpakai AVR dikaji untuk mendapatkan data parameter keselamatan untuk penyimpanan bahan bakar terpakai RDE dengan mengubah pembelahan pada atom logam awal (% FIMA). Parameter ini yang mesti dikaji meliputi radioaktif, panas pereputan, ancaman percambahan kedua-dua 239Pu dan 235U dengan kehadiran 137C, produk pembelahan berbahaya yang dapat melepaskan diri daripada bahan bakar terpakai yang rosak. Pengiraan dilakukan dengan menggunakan ORIGEN 2.1. Hasil kajian menunjukkan % FIMA yang lebih tinggi menyumbang kepada tahap keselamatan yang lebih tinggi yang diperlukan kerana aktiviti dan haba pereputan bahan bakar habis akan meningkat seperti jumlah keseluruhan 239Pu dan 137C. Walau bagaimanapun, jumlah 235U akan menurun. Untuk penyimpanan bahan bakar terpakai selama 100 tahun, %FIMA optimum ialah 8.2 dengan kapasiti kanister 1,900 kerikil. Selanjutnya, aktiviti dan haba pereputan bahan bakar terpakai nuklear masing-masing adalah 2.013 × 1013 Bq dan 6.065 W. Aktiviti 239Pu, 137Cs dan 235U masing-masing adalah 5.187 × 1011, 7.100 × 1012 dan 7.339 × 107 Bq.

 

Kata kunci: %FIMA; bahan bakar terpakai; keselamatan penyimpanan bahan bakar terpakai; reaktor pengalas kerikil

 

REFERENCES

Aisyah, M., Saputra, D.L.I. & Setiawan, R. 2019. Characteristization of radionuclides in spent fuel from experimental pebble-bed reactor. Urania 25(1): 45-58.

Artiani, P.A., Ratiko, R., Purwanto, Y. & Heriyanto, K. 2019. The effect of radiation shielding for dry storage of RDE spent fuels. Jurnal Pengembangan Energi Nuklir 20(2): 83-93.

Center of Radioactive Waste Management (CRWM). 2014. Technical Document of The Study on The Management of Radioactive Waste from RDE HTR-10 Type. 10.

Demkowicz, P.A., Liu, B. & Hunn, J.D. 2019. Coated particle fuel: Historical perspectives and current progress. Journal of Nuclear Materials 515: 434-450.

Dewita, E. 2008. Pengembangan partikel bahan bakar berlapis untuk reaktor VHTR. Jurnal Pengembangan Energi Nuklir 10(2): 113-122.

Dulera, I.V., Sinha, R.K., Rao, A.R. & Patel, R.J. 2017. High temperature reactor technology development in India. Progress in Nuclear Energy 101: 82-99.

Gil, C.S., Kim, D.H., Yoo, J.K. & Lee, J. 2017. Fission yields data generation and benchmarks of decay heat estimation of a nuclear fuel. EPJ Web of Conferences 146: 04048.

Hadad, K., Nematolahi, M. & Golestani, A. 2015. VVER-1000 cross-section library generation for ORIGEN-II based on MCNP calculations. International Journal of Hydrogen Energy 40(44): 15158-15163.

Husnayani, I. 2015. Calculation of radionuclide content of nuclear materials using ORIGEN 2.1 computer code. Sigma Epsilon-Buletin Ilmiah Teknologi Keselamatan Reaktor 19(1): 20-25.

Husnayani, I. & Udiyani, P.M. 2018. Radionuclide characteristics of RDE spent fuels. Jurnal Teknologi Reaktor Nuklir Tri Dasa Mega 20(2): 69-76.

Ji, W., Liang, C. & Pusateri, E.N. 2014. Analytical dancoff factor evaluations for reactor designs loaded with TRISO particle fuel. Annals of Nuclear Energy 63: 665-673.

Kania, M.J., Nabielek, H., Verfondern, K. & Allelein, H.J. 2013. Testing of HTR UO2 TRISO fuels in AVR and in material test reactors. Journal of Nuclear Materials 441(1-3): 545-562.

Kim, J.S., Jeon, Y.S., Dal Park, S., Ha, Y.K. & Song, K. 2015. Analysis of high burnup pressurized water reactor fuel using uranium, plutonium, neodymium, and cesium isotope correlations with burnup. Nuclear Engineering and Technology 47(7): 924-933.

Liem, P.H., Sembiring, T.M. & Tran, H.N. 2018. Evaluation on fuel cycle and loading scheme of the Indonesian experimental power reactor (RDE) design. Nuclear Engineering and Design 340: 245-259.

Liem, P.H., Tran, H.N., Sembiring, T.M., Arbie, B. & Subki, I. 2017. Alternative fueling scheme for the Indonesian experimental power reactor (10 MWth Pebble-Bed HTGR). Energy Procedia 131: 69-76.

Octadamailah, S. & Supardjo. 2017. Effect of uranium density on nuclear fuel life time and burn up in RSG- GAS reactor from a neutronic point of view. Urania Jurnal Ilmiah Daur Bahan Bakar Nuklir 23(2): 117-126.

Prasad, S., Abdulla, A., Morgan, M.G. & Azevedo, I.L. 2015. Nonproliferation improvements and challenges presented by small modular reactors. Progress in Nuclear Energy 80: 102-109.

Pratomo, H.B. 2017. The demand of nuclear power plant in the world will keep increasing in the future. https://www.merdeka.com/uang/kebutuhan-dunia-pada-pembangkit-nuklir-terus-meningkat-di-masa-depan.html. Access on 20 December 2019.

Ratiko, R., Moriizumi, J., Yamazawa, H. & Nasruddin, N. 2019. Quantification of the impact of temperature difference between two connected indoor spaces on 222Rn concentration. Building and Environment 149: 322-329.

Ratiko, R., Samudera, S.A., Hindami, R., Siahaan, A.T., Naldi, L., Hapsari, D., Mahlia, T.M.I. & Nasruddin, N. 2018. Optimization of dry storage for spent fuel from G.A. Siwabessy nuclear research reactor. International Journal of Tecnology 9(1): 55-67.

Sartori, E. 2013. Nuclear data for radioactive waste management. Annals of Nuclear Energy 62: 579-589.

Sen, R.S. & Viljoen, C.F. 2012. The re-evaluation of the AVR melt-wire experiment with specific focus on different modeling strategies and simplifications. Nuclear Engineering and Design 251: 306-316.

Serfontein, D.E., Mulder, E.J. & Reitsma, F. 2014. Assessment and reduction of proliferation risk of reactor-grade plutonium regarding construction of ‘fizzle bombs’ by terrorists. Nuclear Engineering and Design 271: 545-551.

Setiadipura, T., Irwanto, D. & Zuhair, Z. 2015. Preliminary neutronic design of high burnup OTTO cycle pebble bed reactor. Atom Indonesia 41(1): 7-15.

Setiadipura, T., Bakhri, S., Sunaryo, G.R. & Wisnusubroto, D.S. 2018. Cooling passive safety features of reaktor daya eksperimental. AIP Conference Proceedings 1984(1): 020034-1-9.

Siregar, I.H., Frida, A.R., Suharyana, Khakim, A. & Siregar, D. 2016. Calculation on maximum accumulation of Pu-239 and Pu-241 from aqueous homogeneous reactor. Proceedings of The Meeting and Scientific Presentations on Basic Science Research and Nuclear Technology. pp. 169-173.

Ternovykh, M., Tikhomirov, G., Saldikov, I. & Gerasimov, A. 2017. Decay heat power of spent nuclear fuel of power reactors with high burnup at long-term storage. EPJ Web of Conferences 153(07035): 1-6.

Verfondern, Karl. n.d. AVR decommissioning. In IAEA Mission to PTLR-BATAN on HTGR Decommissioning and Waste, Jakarta, Indonesia, May 15-19, 2017.

Wang, J.H., Huang, Y.F., Tang, Y. & Wu, B. 2013. Natural safety analysis of the spent fuel residual heat removal in loading and storage process of HTR-10. Energy Procedia 39: 227-239.

Wang, S. & Yang, B.W. 2017. Numerical investigation on thermal hydraulic and transit time characteristics of density wave oscillations. Energy Procedia 127: 291-301.

Wu, S.C., Chao, D.S. & Liang, J.H. 2019. A study of burnup credit in criticality safety analysis for PBR spent fuel pebbles. Annals of Nuclear Energy 132: 347-356.

 

*Corresponding author; email: ratiko_ratiko@yahoo.com

   

 

 

 

previous