Sains Malaysiana 50(7)(2021): 1827-1841

http://doi.org/10.17576/jsm-2021-5007-01

 

Temperature Phased Anaerobic Digestion at the Intermediate Zone of 45 °C: Performances, Stability and Pathogen Deactivation

(Pencernaan Anaerobik Fasa Suhu di Zon Pertengahan 45 °C: Prestasi, Kestabilan dan Pendeaktifan Patogen)

 

NURUOL SYUHADAA MOHD1,2*, BAOQIANG LI2, SHALIZA IBRAHIM3 & RUMANA RIFFAT2

 

1Department of Civil Engineering, University of Malaya, Lembah Pantai, 50603 Kuala Lumpur, Federal Territory, Malaysia

 

2Department of Civil & Environmental Engineering, George Washington University, Washington, DC 20052, United States of America

 

3Institute of Ocean and Earth Sciences (IOES), University of Malaya, Lembah Pantai, 50603 Kuala Lumpur, Federal Territory, Malaysia

 

Received: 5 February 2020/Accepted: 7 November 2020

 

ABSTRACT

Temperature phased anaerobic digestion (TPAD) systems with conventional sequences (first stage of 55 ℃ and second stage of 35 ℃) have been widely studied. However, very limited studies were available on TPAD system with the first stage operated at the intermediate zone of 45 °C, mainly due to the notion that limited microbial activity occurs within this zone. The objective of this research was to evaluate the performance, stability and the capability of 45 °C TPAD in producing class A biosolids, in comparison to a conventional TPAD. Four combinations of TPAD systems were studied, 45 ℃ TPAD 2.5/10 (1st stage solids retention time (SRT) 2.5 days/2nd stage SRT 10 days), 45 ℃ TPAD 7.5/10, 55 ℃ TPAD 2.5/10 and 55 ℃ TPAD 7.5/10. Among all, 45 ℃ TPAD 7.5/10 was found to have the best performances, attributed to its high volatile solids (VS) destruction (58%), minimal acetate accumulation (127 mg/L), high methane yield (0.58 m3 CH4/kg VS removed), high COD destruction solid COD (sCOD; 74% and total COD (tCOD) 54%) and minimal free NH3 content (67.5 mg/L). As for stability, stable pH distribution, high alkalinity content and low VFA to alkalinity ratio, indicated a well-buffered system. Additionally, the system had also able to produce class A biosolids. Therefore, proved that TPAD system operated at the intermediate zone of 45 ℃ can perform better than the conventional TPAD, hence, highlighting its economic advantage.

 

Keywords: 45 °C TPAD; 45 °C anaerobic digestion; class A biosolids; TPAD

 

ABSTRAK

Sistem pencernaan anaerobik fasa suhu (TPAD) dengan urutan konvensional (peringkat pertama 55 ℃ dan tahap kedua 35 ℃) telah dikaji secara meluas. Walau bagaimanapun, terdapat kajian yang sangat terhad pada sistem TPAD dengan tahap pertama yang beroperasi di zon pertengahan 45 ℃, disebabkan oleh anggapan bahawa aktiviti mikroorganisma adalah terhad di dalam zon ini. Objektif kajian ini adalah untuk menilai prestasi, kestabilan dan keupayaan TPAD 45 ℃ dalam menghasilkan biopepejal kelas A, berbanding dengan TPAD konvensional. Empat gabungan sistem TPAD dikaji, 45 ℃ TPAD 2.5/10 (tahap-1 SRT 2.5 hari/ tahap-2 SRT 10 hari), 45 ℃ TPAD 7.5/10, 55℃ TPAD 2.5/10 dan 55℃ TPAD 7.5/10. Antara semua sistem, 45 ℃ TPAD 7.5/10 didapati mempunyai prestasi terbaik, disebabkan oleh penghapusan VS yang tinggi (58%), pengumpulan asetat minimum (127 mg/L), hasil metana yang tinggi (0.58 m3 CH4/kg VS dikeluarkan), penghapusan COD yang tinggi (sCOD; 74% dan tCOD 54%) dan kandungan NH3 yang minimum (67.5 mg/L). Bagi aspek kestabilan, pengedaran pH yang stabil, kandungan alkali yang tinggi dan nisbah VFA kepada kealkalian yang rendah, telah menunjukkan sistem penampanan yang baik. Di samping itu, sistem ini juga mampu menghasilkan biopepejal kelas A. Oleh itu, membuktikan bahawa sistem TPAD yang beroperasi di zon pertengahan 45 ℃ menunjukkan prestasi lebih baik daripada TPAD konvensional, dengan itu, menunjukkan kelebihan daripada segi ekonomi.

 

Kata kunci: 45 °C TPAD; 45 °C pencerna anaerobik; biopepejal kelas A; TPAD

 

REFERENCES

Aboudi, K., Quiroga, X.G., Gallego, C.J.A. & García, L.I.R. 2017. Comparison of single-stage and temperature-phased anaerobic digestion of sugar beet by-products. 5th International Conference on Sustainable Solis Waste managemenr-ATHENS2017, Greece.

Akgul, D., Cella, M.A. & Eskicioglu, C. 2016. Temperature phased anaerobic digestion of municipal sewage sludge: A Bardenpho treatment plant study. Water Practice and Technology 11(3): 569-573.

Akgul, D., Cella, M.A. & Eskicioglu, C. 2017. Influences of low-energy input microwave and ultrasonic pretreatments on single-stage and temperature-phased anaerobic digestion (TPAD) of municipal wastewater sludge. Energy 123: 271-282.

Alonso, R.M., Río, R.S.D. & García, M.P. 2016. Thermophilic and mesophilic temperature phase anaerobic co-digestion (TPAcD) compared with single-stage co-digestion of sewage sludge and sugar beet pulp lixiviation. Biomass and Bioenergy 93: 107-115.

APHA. 2005. Standard Methods for the Examination of Water and Wastewater. American Public Health Association (APHA).

Avery, L.M., Anchang, K.Y., Tumwesige, V., Strachan, N. & Goude, P.J. 2014. Potential for pathogen reduction in anaerobic digestion and biogas generation in Sub-Saharan Africa. Biomass and Bioenergy 70: 112-124.

Bi, S., Qiao, W., Xiong, L., Ricci, M., Adani, F. & Dong, R. 2019. Effects of organic loading rate on anaerobic digestion of chicken manure under mesophilic and thermophilic conditions. Renewable Energy 139: 242-250.

Bolzonella, D., Fatone, F., Pavan, P. & Cecchi, F. 2005. Anaerobic fermentation of organic municipal solid wastes for the production of soluble organic compounds. Industrial & Engineering Chemistry Research 44(10): 3412-3418.

Böske, J., Wirth, B., Garlipp, F., Mumme, J. & Weghe, H.V.D. 2015. Upflow anaerobic solid-state (UASS) digestion of horse manure: Thermophilic vs. mesophilic performance. Bioresource Technology 175: 8-16.

Braun, R., Huber, P. & Meyrath, J. 1981. Ammonia toxicity in liquid piggery manure digestion. Biotechnology Letters 3(4): 159-164.

EPA. 2003. Technology: Control of pathogens and vector attractions in sewage sludge, EPA/625/R-92/013 C.F.R. United States Environmental Protection Agency (EPA).

Fernández-Rodríguez, J., Pérez, M. & Romero, L. 2016. Semicontinuous temperature-phased anaerobic digestion (TPAD) of organic fraction of municipal solid waste (OFMSW). Comparison with single-stage processes. Chemical Engineering Journal 285: 409-416.

Fu, B., Jiang, Q., Liu, H. & Liu, H. 2014. Occurrence and reactivation of viable but non-culturable E. coli in sewage sludge after mesophilic and thermophilic anaerobic digestion. Biotechnology Letters 36(2): 273-279.

Hagos, K., Zong, J., Li, D., Liu, C. & Lu, X. 2017. Anaerobic co-digestion process for biogas production: Progress, challenges and perspectives. Renewable and Sustainable Energy Reviews 76: 1485-1496.

Hameed, S.A., Riffat, R., Li, B., Naz, I., Badshah, M., Ahmed, S. & Ali, N. 2019. Microbial population dynamics in temperature-phased anaerobic digestion of municipal wastewater sludge. Journal of Chemical Technology & Biotechnology 94(6): 1816-1831.

Han, V. & Dague, R.R. 1997. Laboratory studies on the temperature-phased anaerobic digestion of domestic primary sludge. Water Environment Research 69(6): 1139-1143.

Huang, C., Wang, W., Sun, X., Shen, J. & Wang, L. 2020. A novel acetogenic bacteria isolated from waste activated sludge and its potential application for enhancing anaerobic digestion performance. Journal of Environmental Management 255: 1-7.

Jang, H.M., Cho, H.U., Park, S.K., Ha, J.H. & Park, J.M. 2014. Influence of thermophilic aerobic digestion as a sludge pre-treatment and solids retention time of mesophilic anaerobic digestion on the methane production, sludge digestion and microbial communities in a sequential digestion process. Water Research 48: 1-14.

Jung, H., Kim, J. & Lee, C. 2019. Temperature effects on methanogenesis and sulfidogenesis during anaerobic digestion of sulfur-rich macroalgal biomass in sequencing batch reactors. Microorganisms 7(12): 1-16.

Kahar, A., Warmadewanthi, I.D.A.A. & Hermana, J. 2018. Effects of temperature-pH on liquid phase mass transfer and diffusion coefficients at leachate treatment in anaerobic bioreactor. Konversi 7(2): 71-79.

Leite, W.R.M., Gottardo, M., Pavan, P., Filho, P.B. & Bolzonella, D. 2016. Performance and energy aspects of single and two phase thermophilic anaerobic digestion of waste activated sludge. Renewable Energy 86: 1324-1331.

Li, Y.F., Abraham, C., Nelson, M.C., Chen, P.H., Graf, J. & Yu, Z. 2015. Effect of organic loading on the microbiota in a temperature-phased anaerobic digestion (TPAD) system co-digesting dairy manure and waste whey. Applied Microbiology and Biotechnology 99(20): 8777-8792.

López, A., Rodríguez-Chueca, J., Mosteo, R., Gómez, J. & Ormad, M.P. 2020. Microbiological quality of sewage sludge after digestion treatment: A pilot scale case of study. Journal of Cleaner Production 254: 1-12.

McCarty, P.L. 1964. Anaerobic waste treatment fundamentals. Public Works 95(9): 107-112.

Mohd, N.S., Husnain, T., Li, B., Rahman, A. & Riffat, R. 2015. Investigation of the performance and kinetics of anaerobic digestion at 45 °C. Journal of Water Resource and Protection 7(14): 1099-1110.

Neczaj, E. & Grosser, A. 2019. Biogas production by thermal hydrolysis and thermophilic anaerobic digestion of waste-activated sludge. In Industrial and Municipal Sludge, edited by Prasad, M.N.V., Favas, P.J.D.C., Vithanage, M. & Mohan, S. Butterworth-Heinemann: Elsevier Inc. pp. 741-781.

Prá, M.C.D., Anschau, A., Busso, C., Gabiatti, N. & Bortoli, M. 2019. Effect of short-chain fatty acid production on biogas generation. In Improving Biogas Production: Technological Challenges, Alternative Sources, Future Developments, edited by, H. Treichel & G. Fongaro. Cham: Springer International Publishing. pp. 199-216.

Qin, Y., Higashimori, A., Wu, L.J., Hojo, T., Kubota, K. & Li, Y.Y. 2017. Phase separation and microbial distribution in the hyperthermophilic-mesophilic-type temperature-phased anaerobic digestion (TPAD) of waste activated sludge (WAS). Bioresource Technology 245: 401-410.

Rattanapan, C., Sinchai, L., Tachapattaworakul Suksaroj, T., Kantachote, D. & Ounsaneha, W. 2019. Biogas production by co-digestion of canteen food waste and domestic wastewater under organic loading rate and temperature optimization. Environments 6(2): 1-12.

Riau, V., Rubia, D.L.M.Á. & Pérez, M. 2010. Temperature-phased anaerobic digestion (TPAD) to obtain class A biosolids: A semi-continuous study. Bioresource Technology 101(8): 2706-2712.

Sassi, H.P., Ikner, L.A., Abd-Elmaksoud, S., Gerba, C.P. & Pepper, I.L. 2018. Comparative survival of viruses during thermophilic and mesophilic anaerobic digestion. Science of The Total Environment 615: 15-19.

Seneesrisakul, K., Sutabutr, T. & Chavadej, S. 2018. The effect of temperature on the methanogenic activity in relation to micronutrient availability. Energies 11(5): 11-17.

Shi, X., Lin, J., Zuo, J., Li, P., Li, X. & Guo, X. 2017. Effects of free ammonia on volatile fatty acid accumulation and process performance in the anaerobic digestion of two typical bio-wastes. Journal of Environmental Sciences 55: 49-57.

Shi, X., Zhao, J., Chen, L., Zuo, J., Yang, Y., Zhang, Q., Qin, Z. & Zhou, J. 2019. Genomic dynamics of full-scale temperature-phased anaerobic digestion treating waste activated sludge: Focusing on temperature differentiation. Waste Management 87: 621-628.

Srisowmeya, G., Chakravarthy, M. & Nandhini Devi, G. 2019. Critical considerations in two-stage anaerobic digestion of food waste-A review. Renewable and Sustainable Energy Reviews 119: 1-14.

Tangkathitipong, P., Intanoo, P., Butpan, J. & Chavadej, S. 2017. Separate production of hydrogen and methane from biodiesel wastewater with added glycerin by two-stage anaerobic sequencing batch reactors (ASBR). Renewable Energy 113: 1077-1085.

Vrieze, J.D., Smet, D., Klok, J., Colsen, J., Angenent, L.T. & Vlaeminck, S.E. 2016. Thermophilic sludge digestion improves energy balance and nutrient recovery potential in full-scale municipal wastewater treatment plants. Bioresource Technology 218: 1237-1245.

Wang, S., Ma, F., Ma, W., Wang, P., Zhao, G. & Lu, X. 2019. Influence of temperature on biogas production efficiency and microbial community in a two-phase anaerobic digestion system. Water 11(1): 1-13.

Wei, Y., Liu, J., Zhou, X., Wu, J. & Qian, X. 2019. Effect of solid-liquid separation enhanced by low-temperature hydrolysis in methanogenic phase on two-phase anaerobic sludge digestion system. International Journal of Environmental Science and Technology 16(12): 8573-8584.

Westerholm, M., Levén, L. & Schnürer, A. 2012. Bioaugmentation of syntrophic acetate-oxidizing culture in biogas reactors exposed to increasing levels of ammonia. Applied and Environmental Microbiology 78(21): 7619-7625.

Yenigün, O. & Demirel, B. 2013. Ammonia inhibition in anaerobic digestion: A review. Process Biochemistry 48(5): 901-911.

Yuan, Y., Hu, X., Chen, H., Zhou, Y., Zhou, Y. & Wang, D. 2019. Advances in enhanced volatile fatty acid production from anaerobic fermentation of waste activated sludge. Science of The Total Environment 694: 1-12.

Zhang, C., Yuan, Q. & Lu, Y. 2014. Inhibitory effects of ammonia on methanogen mcrA transcripts in anaerobic digester sludge. FEMS Microbiology Ecology 87(2): 368-377.

Zhao, Q. & Kugel, G. 1996. Thermophilic/mesophilic digestion of sewage sludge and organic wastes. Journal of Environmental Science & Health Part A 31(9): 2211-2231.

 

*Corresponding author; email: n_syuhadaa@um.edu.my