Sains Malaysiana 51(12)(2022): 4087-4098

http://doi.org/10.17576/jsm-2022-5112-17

 

Enhanced Catalytic Palladium Embedded Inside Porous Silicon for Improved Hydrogen Gas Sensing

(Paladium Bermangkin Dipertingkat Terbenam di dalam Silikon Berliang untuk Pengesanan Gas Hidrogen yang Diperbaik)

 

ALHAN FARHANAH ABD RAHIM1, *, NURUL SYUHADAH MOHD RAZALI1, ROSFARIZA RADZALI1, AINOKHILAH MAHMOOD2, IRNI HAMIZA HAMZAH1 & MOHAMED FAUZI PACKEER MOHAMED3

 

1Centre for Electrical Engineering Studies, Universiti Teknologi MARA, Cawangan Pulau Pinang, Permatang Pauh Campus, 13500 Pulau Pinang, Malaysia

2Department of Applied Science, Universiti Teknologi MARA, Cawangan Pulau Pinang, 13500 Permatang Pauh, Pulau Pinang, Malaysia

3School of Electrical and Electronic Engineering, Engineering Campus, Universiti Sains Malaysia, 14300 Nibong Tebal, Pulau Pinang, Malaysia

 

Received: 13 April 2022/Accepted: 20 August 2022

 

Abstract

In this work, we reported on room temperature porous silicon (PS) and embedding PS using simple and economical techniques of electrochemical etching and thermal evaporation. The PS substrate was prepared using the technique of electrochemically etching the n-type Si (100) wafer at a constant current density of 10 mA/cm2 for 10 min under the illumination of incandescent white light. After PS formation, Ge pieces were thermally evaporated onto the two PS substrates in a vacuum condition. This was then followed by the deposition of the ZnO layer onto the Ge/PS substrate by the same method using commercial 99.9% pure ZnO powders. The three samples were identified as PS, Ge/PS and ZnO/Ge/PS samples, respectively. Pd finger contacts were deposited on the PS and embedding PS (Ge/PS and ZnO/Ge/PS) to form Pd on PS hydrogen sensors using RF magnetron sputtering. SEM and EDX suggested the presence of substantial Ge and ZnO inside the uniform circular pores for Ge/PS and ZnO/Ge/PS samples, respectively. Raman spectra showed that good crystalline Ge and ZnO nanostructures embedded inside the pores were obtained. For hydrogen sensing, Pd on ZnO/Ge/PS Schottky diode exhibited a dramatic change of current after exposure to H2 as compared to PS and Ge/PS devices. It is observed that the sensitivity increased exponentially with the hydrogen flow rate for all the sensors. The ZnO/Ge/PS showed more sensitivity towards H2 than that of PS and Ge/PS especially at high flow rate of H2 with higher current gain (69.11) and shorter response (180 s) and recovery times (30 s).

 

Keywords: Ge; H2 sensor; porous silicon; thermal evaporation; ZnO

 

Abstrak

Dalam kajian ini, kami melaporkan silikon berliang (PS) dan PS terbenam menggunakan teknik mudah dan murah secara elektrokimia dan penyejatan terma pada suhu bilik. Substrat PS telah disediakan menggunakan teknik pengelasan elektrokimia wafer Si (100) jenis-n pada ketumpatan arus malar 10 mA/cm2 selama 10 minit di bawah pencahayaan cahaya putih pijar. Selepas pembentukan PS, kepingan Ge disejat secara terma ke dua substrat PS dalam keadaan vakum. Ini diikuti dengan pemendapan lapisan ZnO ke substrat Ge/PS dengan kaedah yang sama menggunakan serbuk ZnO tulen komersial 99.9%. Ketiga-tiga sampel tersebut telah dikenal pasti sebagai sampel PS, Ge/PS dan ZnO/Ge/PS. Sentuhan berbentuk jari daripada Pd didepositkan pada PS dan PS terbenam (Ge/PS dan ZnO/Ge/PS) untuk membentuk Pd di atas penderia hidrogen PS dengan menggunakan teknik RF magnetron terpercik. SEM dan EDX mencadangkan kehadiran Ge dan ZnO yang besar di dalam liang bulat seragam masing-masing untuk sampel Ge/PS dan ZnO/Ge/PS. Spektrum Raman menunjukkan bahawa struktur nano Ge dan ZnO kristal yang baik yang tertanam di dalam liang telah diperoleh. Untuk penderiaan hidrogen, Pd pada diod Schottky ZnO/Ge/PS menunjukkan perubahan dramatik arus selepas pendedahan kepada H2 berbanding dengan peranti PS dan Ge/PS. Diperhatikan bahawa kesensitifan meningkat secara eksponen dengan kadar aliran hidrogen untuk semua sensor. ZnO/Ge/PS menunjukkan lebih kesensitifan terhadap H2 berbanding PS dan Ge/PS terutamanya pada kadar aliran tinggi H2 dengan perolehan arus yang lebih tinggi (69.11) dan tindak balas yang lebih pendek (180 s) dan masa pemulihan (30 s).

 

Kata kunci: Ge; penderia H2; penyejatan terma; silikon berliang; ZnO

 

REFERENCES

Abd Rahim, A.F., Hashim, M.R., Rusop, M., Ali, N.K. & Yusuf, R. 2012. Room temperature Ge and ZnO embedded inside porous silicon using conventional methods for photonic application. Superlattices and Microstructures 52(5): 941-948.

Al-Hardan, N.H., Abdullah, M.J. & Abdul Aziz, A. 2010. Sensing mechanism of hydrogen gas sensor based on RF-sputtered ZnO thin films. International Journal of Hydrogen Energy 35(9): 4428-4434.

Alwan, A.M., Abed, H.R. & Rashid, R.B. 2021. Enhancing the temporal response of modified porous silicon-based CO gas sensor. Solid-State Electronics 181-182: 108019.

Aroutiounian, V., Arakelyan, V., Galstyan, V., Martirosyan, K. & Soukiassian, P. 2009. Hydrogen sensor made of porous silicon and covered by TiO2-x or ZnO<Al> thin film. IEEE Sensors Journal 9(1): 9-12.

Boon-Brett, L., Bousek, J., Black, G., Moretto, P., Castello, P., Hübert, T. & Banach, U. 2010. Identifying performance gaps in hydrogen safety sensor technology for automotive and stationary applications. International Journal of Hydrogen Energy 35(1): 373-384.

Cai, Z. & Park, S. 2022. A superior sensor consisting of porous, Pd nanoparticle–decorated SnO2 nanotubes for the detection of ppb-level hydrogen gas. Journal of Alloys and Compounds 907: 164459.

Grimes, C.A., Ong, K.G., Varghese, O.K., Yang, X., Mor, G., Paulose, M., Dickey, E.C., Ruan, C., Pishko, M.V., Kendig, J.W. & Mason, A.J. 2003. A sentinel sensor network for hydrogen sensing. Sensors 3(3): 69-82.

Han, C-H., Han, S-D. & Khatkar, S.P. 2006. Enhancement of H2-sensing properties of F-doped SnO2 sensorby surface modification with SiO2. Sensors 6(5): 492-502.

Hérino, R. 2000. Nanocomposite materials from porous silicon. Materials Science and Engineering: B 69-70: 70-76.

Jandow, N.N., Yam, F.K., Thahab, S.M., Abu Hassan, H. & Ibrahim, K. 2010. Characteristics of ZnO MSM UV photodetector with Ni contact electrodes on poly propylene carbonate (PPC) plastic substrate. Current Applied Physics 10(6): 1452-1455.

Jeske, M., Schultze, J.W., Thönissen, M. & Münder, H. 1995. Electrodeposition of metals into porous silicon. Thin Solid Films 255(1): 63-66.

Johansson, M., Lundström, I. & Ekedahl, L.G. 1998. Bridging the pressure gap for palladium metal-insulator-semiconductor hydrogen sensors in oxygen containing environments. Journal of Applied Physics 84(1): 44-51.

Kanungo, J., Saha, H. & Basu, S. 2010. Pd sensitized porous silicon hydrogen sensor - Influence of ZnO thin film. Sensors and Actuators B: Chemical 147(1): 128-136.

Kareem, M.H., Hussein, H.T. & Abdul Hussein, A.M. 2022. Study of the effect of CNTs, and (CNTs-ZnO) on the porous silicon as sensor for acetone gas detection. Optik 259: 168825.

Kashtiban, R.J., Pinto, S.R.C., Bangert, U., Rolo, A.G., Chahboun, A., Gomes, M.J.M. & Harvey, A.J. 2010. Ge nanocrystals in alumina matrix: A structural study. Journal of Physics: Conference Series 209: 012060.

Korotcenkov, G. & Cho, B.K. 2010. Porous semiconductors: Advanced material for gas sensor applications. Critical Reviews in Solid State and Materials Sciences 35(1): 1-37.

Lewis, S.E., DeBoer, J.R., Gole, J.L. & Hesketh, P.J. 2005. Sensitive, selective, and analytical improvements to a porous silicon gas sensor. Sensors and Actuators B: Chemical 110(1): 54-65.

Mareš, J., Krištofik, J. & Hulicius, E. 1995. Influence of humidity on transport in porous silicon. Thin Solid Films 255 (1): 272-275.

Meng, X., Bi, M., Xiao, Q. & Gao, W. 2022. Ultra-fast response and highly selectivity hydrogen gas sensor based on Pd/SnO2 nanoparticles. International Journal of Hydrogen Energy 47(5): 3157-3169.

Mhamdi, H., Azaiez, K., Fiorido, T., Benabderrahmane Zaghouani, R., Lazzari, J.L., Bendahan, M. & Dimassi, W. 2022. Room temperature NO2 gas sensor based on stain-etched porous silicon: Towards a low-cost gas sensor integrated on silicon. Inorganic Chemistry Communications 139: 109325.

Mizsei, J. 2007. Gas sensor applications of porous Si layers. Thin Solid Films 515(23): 8310-8315.

Naderi, N., Hashim, M.R. & Amran. T.S.T. 2012. Enhanced physical properties of porous silicon for improved hydrogen gas sensing. Superlattices and Microstructures 51(5): 626-634.

Parkhutik, V. 1999. Porous silicon - Mechanisms of growth and applications. Solid-State Electronics 43(6): 1121-1141.

Polishchuk, V., Souteyrand, E., Martin, J.R., Strikha, V.I. & Skryshevsky, V.A. 1998. A study of hydrogen detection with palladium modified porous silicon. Analytica Chimica Acta 375(3): 205-210.

Rahimi, F. & Iraji zad, A. 2007. Characterization of Pd nanoparticle dispersed over porous silicon as a hydrogen sensor. Journal of Physics D: Applied Physics 40(23): 7201-7209.

Rhoderick, E.H., Rhoderick, E.H., Williams, R.H. & Williams, R.H. 1988. Metal-Semiconductor Contacts. New York: Clarendon Press.

Wu, J., Xi, X., Zhu, W., Yang, Z., An, P., Wang, Y., Li, Y., Zhu, Y., Yao, W. & Jiang, G. 2022. Boosting photocatalytic hydrogen evolution via regulating Pt chemical states. Chemical Engineering Journal 442(Part 2): 136334.

 

*Corresponding author; email: alhan570@uitm.edu.my

 

 

 

 

previous