Sains Malaysiana 51(12)(2022): 4099-4110

http://doi.org/10.17576/jsm-2022-5112-18

 

Kesan Suhu Rendaman dan Suhu Sepuh Lindap dalam Penyediaan Filem Nipis Bismut Sulfida (Bi2S3) terhadap Prestasi Sel Suria Organik Jenis Songsang Berasaskan P3HT: PCBM

(The Effect of Immersion and Annealing Temperatures in the Preparation of Thin Films of Bismuth Sulphide (Bi2S3) on the Performance of Inverted Type Organic Solar Cells Based on P3HT: PCBM)

 

NURUL NADHIRAH BINTI MD RIDZUAN & CHI CHIN YAP*

 

Jabatan Fizik Gunaan, Fakulti Sains dan Teknologi, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

Received: 22 July 2022/ Accepted: 6 October 2022

 

 

Abstrak

Filem nipis bismut sulfida (Bi2S3) mempunyai jurang tenaga yang kecil dan boleh dihasilkan dengan mudah pada suhu yang rendah melalui proses pemendapan celupan kimia. Ia adalah bahan yang sesuai untuk digunakan sebagai lapisan pengangkut elektron (ETL) dalam sel suria organik jenis songsang (I-OSC) yang menggantikan zink oksida (ZnO) yang mempunyai jurang jalur tenaga yang besar dan memerlukan suhu sepuh lindap yang tinggi dalam proses penghasilan sel suria berprestasi tinggi. Kajian terdahulu mengenai kesan tempoh rendaman menunjukkan bahawa kecekapan penukaran kuasa (PCE) optimum yang dapat dicapai oleh filem nipis Bi2S3 adalah sehingga 2.32% dengan rendaman selama 30 minit dalam larutan Bi2S3 pada suhu bilik. Dalam kajian ini, suhu rendaman dan sepuh lindap pada penyediaan filem nipis Bi2S3 pula dikaji untuk memerhatikan kesannya terhadap prestasi fotovoltaik I-OSC. Masa rendaman substrat dalam larutan Bi2S3 ditetapkan pada tempoh 30 minit tetapi suhu rendaman dibezakan. Hasil kajian menunjukkan suhu rendaman pada suhu bilik masih memberikan PCE tertinggi iaitu 1.79% dengan nilai ketumpatan arus litar pintas (Jsc,), 8.01 mA.cm-2 dan voltan litar terbuka (Voc), 0.54 V. Selain itu, bagi suhu sepuh lindap, PCE menurun apabila suhu sepuh lindap yang tinggi dikenakan. Menariknya, apabila suhu sepuh lindap yang tinggi digunakan, kehabluran Bi2S3 bertambah baik, tetapi permukaan FTO lebih banyak terdedah kepada P3HT, mengakibatkan kebocoran arus yang tinggi. Kajian ini menunjukkan bahawa sampel yang disediakan pada suhu rendaman dan sepuh lindap yang tinggi tidak menghasilkan prestasi fotovoltaik yang lebih baik.

 

Kata kunci: Bismut sulfida; lapisan pengangkut elektron; pemendapan celupan kimia; sel suria organik jenis songsang; suhu rendaman

 

Abstract

Bismuth sulfide (Bi2S3) thin film has small energy band gap and can be easily synthesized at low temperature using chemical bath deposition process. It is a suitable material to be used as electron transport layer (ETL) in inverted organic solar cells (I-OSCs) to replace zinc oxide (ZnO) which has large energy band gap and requires high annealing temperature in process to produce high performance solar cells. Previous study on the effect of immersion duration showed that the optimum power conversion efficiency (PCE) that can be achieved by Bi2S3 thin film is up to 2.32% with 30 minutes of immersion in Bi2S3 solution at room temperature. In this work, immersion and annealing temperatures in preparation of Bi2S3 thin film were studied to observe their effects on the photovoltaic performance of I-OSCs. Immersion duration of substrate in Bi2S3 solution was fixed at 30 minutes but the immersion temperature was varied. The result showed the immersion temperature at room temperature still gave the highest PCE of 1.79% with short circuit current density (Jsc,) of 8.01 mA.cm-2 and open circuit voltage (Voc) of 0.54 V. Besides, for annealing temperature, the PCE decreased when high annealing temperature was applied. Interestingly, as the high annealing temperature was applied, the crystallinity of Bi2S3 improved, but more FTO surface was exposed to P3HT, resulting in high leakage current. This study suggests that samples prepared at high immersion and annealing temperature did not result in better photovoltaic performance.

 

Keywords: Bismuth sulfide; chemical bath deposition; electron transport layer; immersion temperature; inverted organic solar cell

 

 

REFERENCES

Al-hashimi, M.K., Kadem, B.Y. & Hassan, A.K. 2018. Rutile TiO2 films as electron transport layer in inverted organic solar cell. J. Mater. Sci.: Mater. Electron. 29: 7152-7160.

Ali, N., Arshad, H., Ahmed, R., Omar, M. F., Sultan, M. & Fu, Y. Q. 2018. Crystallized InBiS3 thin films with enhanced optoelectronic properties. Applied Surface Science 436: 293-301.

Aniket, R., Kumar, A., Rahman, M.R., Vashistha, N., Kuldeep, K.G., Pandey, S., Sahoo, N.G., Chand, S. & Rajiv, K.S. 2018. Non-approximated series resistance evaluation by considering high ideality factor in organic solar cell. AIP Advances 8: 125121.

Balasubramanian, V., Kumar, P.N. & Sengottaiyan, D. 2017. Effect of deposition temperature on structural, optical and electrical properties of copper bismuth sulphide (CuBiS2) thin films deposited by chemical bath deposition. Materials Science-Poland 35(2): 329-334.

Balasubramanian, V., Suriyanarayanan, N., Prabahar, S. & Srikanth, S. 2011. Effect of annealing temperature on structural and optical properties of chemically deposited bismuth sulphide thin films. Chalcogenide Letters 8(11): 671-681.

Cates, N. & Bernechea, M. 2018. Research update: Bismuth based materials for photovoltaics. APL Materials 6: 084503.

Chaudhary, D.K., Dhawan, P.K., Patel, S.P. & Bhasker, H.P. 2021. Large area semitransparent inverted organic solar cells with enhanced operational stability using TiO2 electron transport layer for building integrated photovoltaic devices. Materials Letters 283: 128725.

Chavez-Mendiola, E., Acosta-Enríquez, M.C., Carrillo-Castillo, A., Arellano-Tánorie, O., Rivera-Nieblas, J.O. & Castillo, S.J. 2018. Preparation of thin films bismuth sulfide by chemical bath deposition technique, a simplified formulation. Chalcogenide Letters 15(7): 395-404.

Dachraoui, O., Merino, J.M., Mami, A., León, A. Caballero, R. & Meherzi, H. M. 2018. Annealing study and thermal investigation on bismuth sulfide thin films prepared by chemical bath deposition in basic medium. Appl. Phys. A 124: 166.

Fazal, T., Iqbal, S., Shah, M., Ismail, B., Shaheen, N., Alharthi, A.I., Awwad, N.S. & Ibrahium, H.A. 2022. Correlation between structural, morphological and optical properties of Bi2S3 thin films deposited by various aqueous and non-aqueous chemical bath deposition methods. Results in Physics 40: 105817.

Fekadu, G.H. & Ampong, F.K. 2016. Effect of deposition temperature on the structural, morphological and optical band gap of lead selenide thin films synthesized by chemical bath deposition method. Materials Chemistry and Physics 183: 320-325.

Fouad, O., Rmili, A., Elidrissi, S.E.B., Bouaoud, A., Erguig, H. & Elies, P. 2011. Influence of bath temperature, deposition time and [s]/[cd] ratio on the structure, surface morphology, chemical composition and optical properties of cds thin films elaborated by chemical bath deposition. Journal of Modern Physics 2: 1073-1082.

Ginting, R.T., Yap, C.C., Yahaya, M. & Salleh, M.M. 2014. Impedance spectroscopy characterization of inverted type organic solar cells based on poly(3-hexylthiophene-2,5-diyl). AIP Conf. Proc. 1571: 29-34.

Harumi, M.G., Nair, M.T.S. & Nair, P.K. 2011. Chemically deposited lead sulfide and bismuth sulfide thin films and Bi2S3/PbS solar cells. Thin Solid Films 519(7): 2287-2295.

Ho, P.Y., Thiyagu, S., Kao, S.H., Kao, C.Y. & Lin, C.F. 2014. ZnO nanorod arrays for various low-band gap polymers in inverted organic solar cells. Nanoscale 6: 466-471.

Hussain, A., Begum, A. & Rahman, A. 2014. Effects of annealing on nanocrystalline Bi2S3 thin films prepared by chemical bath deposition. Materials Science in Semiconductor Processing 21: 74-81.

Ismail, N.N. 2018. Kesan kepekatan larutan bismuth sulfida terhadap prestasi sel suria organik jenis songsang. Tesis. Universiti Kebangsaan Malaysia (Tidak diterbitkan).

Jiangang, L., Shao, S., Wang, H., Zhao, K., Xue, L., Gao, X., Xie, Z. & Han, Y. 2010. The mechanisms for introduction of n-dodecylthiol to modify the P3HT/PCBM morphology. Organic Electronics 11: 775-783.

Kaleemulla, S., Sivasankar, R.A., Uthanna, S. & Sreedhara, R.P. 2007. Physical properties of flash evaporated In2O3 films prepared at different substrate temperatures. Materials Letters 61(21): 4309-4313.

Khairulaman, F., Yap, C.C. & Jumali, M. 2021. Improved performance of inverted type organic solar cell using copper iodide-doped P3HT:PCBM as active layer for low light application. Materials Letters 283: 128827.

Li, D., Hu, L., Xie, Y., Niu, G., Liu, T., Zhou, Y., Gao, L., Yang, B. & Tang, J. 2016. Low-temperature processed amorphous Bi2S3 film as an inorganic electron transport layer for perovskite solar cells. ACS Photonics 3(11): 2122-2128.

Li, Y., Zhang, Y., Lei, Y., Li, P., Jia, H., Hou, H. & Zheng, Z. 2012. In situ fabrication of Bi2S3 nanocrystal film for photovoltaic devices. Mater. Sci. Eng., B 177: 1764-1768.

Lim, E.L., Yap, C.C., Hj Jumali, M.H. & Khairulaman, F. 2019. Solution-dispersed copper iodide anode buffer layer gives P3HT:PCBM-based organic solar cells an efficiency boost. J. Mater. Sci.: Mater. Electron. 30: 2726-2731. 

Lim, E.L., Yap, C.C., Haji Jumali, M.H., Mat Teridi, M.A. & Chin, H.T. 2017. Inverted organic solar cells integrated with room temperature solution-processed bismuth sulfide electron selective layer. Solar Energy 157: 1108-1113.

Lim, E.L., Yap, C.C., Yahaya, M., Salleh, M.M. & Haji Jumali, M.H. 2015. ZnO nanorod arrays pre-coated with DCJTB dye for inverted type hybrid solar cells incorporating P3HT donor. J. Mater. Sci.: Mater. Electron 26: 719-725.

Lind, S. 2018. Recombination losses in organic solar cells. Tesis. Karlstads University (Tidak diterbitkan).

Liu, H.W., Chang, D.Y., Chiu, W.Y., Rweib, S.P. & Wang, L. 2012. Fullerene bisadduct as an effective phase-separation inhibitor in preparing poly(3-hexylthiophene)–[6,6]-phenyl-C61-butyric acid methyl ester blends with highly stable morphology. J. Mater. Chem 22: 15586-15591.

Maclachlan, A.J., O`Mahony, F.T.F., Sudlow, A.L., Hill, M.S., Molloy, K.C., Nelson, J. & Haque, S.A. 2014. Solution-processed mesoscopic Bi2S3: Polymer photoactive layers. Chem. Phys. Chem. 15: 1019-1023.

Mageshwari, K. & Sathyamoorthy, R. 2012. Influence of substrate temperature on the physical properties of thermally evaporated nanocrystalline bismuth sulfide thin films. Vaccum 86(12): 2029-2034.

Mahmud, A., Elumalai, N.K., Upama, M.B., Wang, D., Chan, K.H., Wright, M., Xu, C., Haque, F. & Uddin, A. 2017. Low temperature processed ZnO thin film as electron transport layer for efficient perovskite solar cells. Solar Energy Materials and Solar Cells 159: 251-264.

Mihailetchi, V.D., Xie, H., Boer, B.D., Koster, L.J.A. & Blom, P.W.M. 2006. Charge transport and photocurrent generation in poly(3-hexylthiophene): Methanofullerene bulk-heterojunction solar cells. Adv. Func. Mater. 16: 699-708.

Muhammad, F.F. & Sulaiman, K. 2011. Photovoltaic performance of organic solar cells based on DH6T/PCBM thin film active layers. Thin Solid Films 519: 5230-5233.

Nair, M.T.S. & Nair, P.K. 1990. Photoconductive bismuth sulphide thin films by chemical deposition. Semicond. Sci. Technol. 5: 1225-1230.

Omar, A.A., Viney, S., Shawn, B., Enkeleda, D. & Alexandru, S.B. 2013. Organic solar cells: A review of materials, limitations, and possibilities for improvement. Particulate Science and Technology 31(5): 427-442.

Proctor, C.M. & Nguyen, T.Q. 2015. Effect of leakage current and shunt resistance on the light intensity dependence of organic solar cells. Appl. Phys. Lett. 106: 083301.

Scharber, M. & Sariciftci, N.S. 2013. Efficiency of bulk-heterojunction organic solar cells. Progress in Polymer Science 38: 1929-1940.

Schumann, S., Da Campo, R., Illy, B., Cruickshank, A.C., McLachlan, M.A., Ryan, M.P., Riley, D.J., McComb, D.W. & Jones, T.S. 2011. Inverted organic photovoltaic devices with high efficiency and stability based on metal oxide charge extraction layers. Journal of Materials Chemistry 21: 2381-2386.

Silverman, M.S. 1964. High temperature, high pressure synthesis of a new bismuth sulfide. Notes 3(7): 1041.

Thambidurai, M., Kim, J.Y., Kang, C.M., Muthukumarasamy, N., Song, H.J., Song, J., Ko, Y., Velauthapillai, D. & Lee, C. 2014. Enhanced photovoltaic performance of inverted organic solar cells with In-doped ZnO as an electron extraction layer. Renewable Energy 66: 433-442.

Trost, S., Zilberberg, K., Behrendt, A. & Riedl, T. 2012. Room-temperature solution processed SnOx as an electron extraction layer for inverted organic solar cells with superior thermal stability. J. Mater. Chem. 22(32): 16224-16229.

Wang, Z., Qu, S., Zeng, X., Liu, J., Tan, F. & Jin, L. 2010. Influence of interface modification on the performance of polymer/Bi 2S3 nanorods bulk heterojunction solar cells. Applied Surface Science 257: 423-428.

Whittaker-Brooks, L., Gao, J., Hailey, A.K., Thomas, C.R., Yao, N. & Loo, L. 2015. Bi2S3 nanowire networks as electron acceptor layers in solution-processed hybrid solar cells. Journal of Materials Chemistry 3: 2686-2692.

Yoo, K.S., Han, S.D., Moon, H.G., Yoon, S.J. & Kang, C.Y. 2015. Highly sensitive H2S sensor based on the metal-catalyzed SnO2 nanocolumns fabricated by glancing angle deposition. Sensors 15: 15468-15477.

Zhang, F., Xu, X., Tang, W., Zhang, J., Zhuo, Z., Wang, J., Wang, J., Xu, Z. & Wang, Y. 2011. Recent development of the inverted configuration organic solar cells. Solar Energy Materials & Solar Cells 95: 1785-1799.

Zhang, M., Zhu, L., Zhou, G., Hao, T., Qiu, C., Zhao, Z., Hu, Q., Bryon, W.L., Zhu, H., Ma, Z., Tang, Z., Feng, W., Zhang, Y., Thomas, P.R. & Liu, F. 2021. Single-layered organic photovoltaics with double cascading charge transport pathways: 18% efficiencies. Nat. Commun. 12(309): 1-10.

Zhao, N., Osedach, T.P., Chang, L.Y., Geyer, S.M., Wanger, D., Binda, M.T., Arango, A.C., Bawendi, M.G. & Bulovic, V. 2010. Colloidal PbS quantum dot solar cells with high fill factor. ACS Nano 4: 3743-3752.

 

*Corresponding author; email: ccyap@ukm.edu.my

 

 

 

previous